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Abstract A method to evaluate the nonrelativistic electron-repulsion, nuclear attrac-
tion and kinetic energy three-electron integrals over Slater orbitals appearing in
Hylleraas-CI (Hy-CI) electron structure calculations on atoms is shown. It consists
on the direct integration over the interelectronic coordinate ri j and the sucessive inte-
gration over the coordinates of one of the electrons. All the integrals are expressed as
linear combinations of basic two-electron integrals. These last are solved in terms of
auxiliary two-electron integrals which are easy to compute and have high accuracy.
The use of auxiliary three-electron ones is avoided, with great saving of storage mem-
ory. Therefore this method can be used for Hy-CI calculations on atoms with number
of electrons N ≥ 5. It has been possible to calculate the kinetic energy also in terms of
basic two-electron integrals by using the Hamiltonian in Hylleraas coordinates, for this
purpose some mathematical aspects like derivatives of the spherical harmonics with
respect to the polar angles and recursion relations are treated and some new relations
are given.
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1 Introduction

Mathematical and computational developments in the analytical calculations of inte-
grals play a key role in the successful extension and future applications of the explic-
itly correlated methods. A recent book is devoted to the analytical evaluation of
atomic and molecular correlated and uncorrelated integrals over Slater orbitals [1].
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Among the highly accurate methods, the Configuration Interaction method (CI) using
Slater orbitals suffers from slow convergence and requires a very large number of
configurations, what reduces its applicability to small atoms. As it is well known, the
CI wave function includes implicitly r2

i j terms. These are known not to be as efficient
as the linear ri j ones, which fulfill the so-called Kato cusp condition [2]. As a con-
sequence, explicitly correlated wave functions with linear ri j like the Hylleraas-type
wave functions [3] converge faster to the exact solution of the Schrödinger equation
[4]. Wave functions which include also negative powers of the radial coordinates of
the electrons and logarithmic terms show very good convergence to the exact solution,
as it has been the case in recent calculations on helium atom [5].

Hylleraas-type wave functions led recently to highly accurate energy results in
calculations of light atoms, i.e. helium [6], lithium [7], and beryllium [8] and the two-
electron molecules H2 [9], and HeH+ [10]. They were also applied to the larger atom
Ne [11], and the LiH molecule [12]. The challenge in the future is the application of
the Hylleraas-type methods to calculate with high accuracy the nonrelativistic energy
of the first row of atoms and further.

Hylleraas-type wave functions can be used to calculate a wide range of properties,
to obtain closed form expressions of the exact one-electron density-matrix [13], to
get the analytical representation of the exchange-correlation potential [14] in den-
sity functional theory (DFT), and as trial wave functions for quantum Monte Carlo
methods.

The motivation of this paper was to overcome the demanding memory problem
in calculations on boron atom using a large set of exponents. Clary and Handy [11]
concerning the Ne atom, pointed out the problem to store all the integrals in core:
“It is thus clear that further investigations in the CI-Hy method are necessary, with
particular reference to the development of programs and methods of efficiently calcu-
late the three- and four-electron integrals before an extensive configuration search and
a subsequent improvement in the neon energy reported here can be made”. Indeed,
the number of three- and four-electron auxiliary integrals, which should be stored in
order to calculate efficiently the matrix elements, according to our computer program,
grows as n6

orb × n3
pow and n8

orb × n4
pow, respectively, where norb is the number of

atomic orbitals with different exponents and n pow is the maximal value of the sum
of the powers of the charge distributions and operators. Consequently, conventional
Hy-CI calculations of atoms with N ≥ 5 request huge computer memory. This was
the case in calculations on boron atom which are in progress [15].

In the standard Hylleraas method all possible interelectronic distances ri j may be
included simultaneously in a configuration with the symmetry of the ground state. Until
now it has been applied using only s-type orbitals, therefore all the resulting integrals
have been of radial symmetry. Excitations to angular orbitals are not included in this
wave function. The resulting matrix elements contain nevertheless many-electron inte-
grals, which are difficult to evaluate for N ≥ 4 electrons. For N = 4 the four-electron
integrals have not been fully solved yet. Integrals for double-linked wave functions
were worked out by Kleindienst et al. [16], the most general four-electron integrals
were given by King [17]. For N ≥ 5 one would have to solve generally five-electron
integrals, six-electron ones, and so on.
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The Hylleraas-CI (Hy-CI) wave function [18,19] is a Configuration-Interaction
wave function containing up to one linear ri j per configuration. Excited
configurations including ri j are possible and theoretically replace the many-ri j con-
figurations of the standard Hylleraas wave function.

Due to the presence of only one ri j per configuration and to the form of the operators
in the Hamiltonian, the Hy-CI wave function leads only to two-, three- and four-elec-
tron integrals, for any atom or system, which can be classified in the following types:
two- and three-electron integrals:1

〈r12〉, 〈r12r13〉,
〈

r12

r13

〉
,

〈
r12r13

r23

〉
, (1)

and three kinds of four-electron integrals, which evaluation will be shown in a forth-
coming paper II of this series [20]:

〈
r12r13

r14

〉
,

〈
r12r13

r34

〉
,

〈
r12r34

r23

〉
. (2)

The classical method to solve the three- and four-electron integrals appearing in non-
relativistic Hylleraas-type calculations is to expand them in terms of auxiliary three-
electron integrals [18,21–33], and four-electron auxiliary integrals [8,18,17,34,35],
respectively, by the use of the Laplace expansion [36]. Radial four-electron integrals
were also evaluated analytically [37]. The three-electron integral with fully linked indi-
ces 〈r12r13r−1

23 〉, has been calculated by expansion in three-electron auxiliary integrals
[29,30,38], and analytically [39–42].

The method of this paper consists on integrating directly over the interelectronic
distances ri j , taken as integration coordinates. The expansion of ri j into si j and gi j

(smaller and greater of r1 and r2) is avoided, which produced the great number of
auxiliary integrals. Instead a successive integration over the coordinates of one elec-
tron is done, and an integral of lower order results. The three-electron integrals are
broken down in linear combinations of two-electron integrals and consequently, the
calculation of three-electron auxiliary integrals is entirely avoided. This method of
integration is based on the theory of Calais and Löwdin [43], who evaluated radial
and angular two-electron integrals. The fully linked three-electron integral was evalu-
ated by Szász [44] in the year 1962, paralelly to Calais and Löwdin, essentially using
the same method. The Szász’s method is similar to the method used here, he used a
similar rotation formula and direct integration over ri j . Drake treated the case of gen-
eral angular two-electron integrals [45], and relativistic two-electron integrals [46].
Perkins [47] extended the method to evaluate three- and four-electron radial integrals
(restricted to s-type orbitals). In this paper the method is extended: (1) to the calcula-
tion of integrals where one of the interelectronic distances ri j has a negative power,

1 The notation e.g. 〈r12r13〉 represents the integral where the left and right hand orbitals of electrons 1, 2
and 3 are involved: 〈φ(r1)φ(r2)φ(r3)|r12r13|φ(r1)φ(r2)φ(r3)〉. The indices of the integrals can be inter-
changed to write them in these forms. The usual CI integrals 〈1/r12〉 are obviated as so as the integral
〈r2

12〉.
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i.e. 〈r12r−1
13 〉, and (2) to correlated angular integrals, that is, for any Slater orbital

s, p, d, f, . . .. The angular four-electron integrals were until now never done by this
method of integration, they will be presented in a following paper of these series.

The kinetic energy three-electron integrals are solved in terms of two-electron ones.
The derivatives in the kinetic energy operator would have made it necessary to expand
ri j in si j and gi j , which would lead to three-electron auxiliary integrals. The use of
the Hamiltonian in Hylleraas coordinates [48] allows to differentiate separately with
respect to every coordinate, leading to three-electron integrals which can be evaluated
in terms of two-electron ones. For this it has been necessary to perform the deriva-
tives of the spherical harmonics with respect to the polar angles. Some new recursion
relations are given in the Appendix C. The resulting equations for the angular kinetic
energy look somehow cumbersome, but they can be directly programmed, many terms
cancel, leading to one or few radial three-electron integrals.

Finally, this integration method can be straightforward extended to higher powers
ν of rνi j appearing in the standard Hylleraas method. Also this method can be used
to reduce five-, six-, and many-electron integrals with an unlinked electron index to
integrals of one order less.

Along this work many of the integrals were first solved by using the algebraic pro-
gram Maple [49]. The kinetic energy results have been checked with the ones of Sims
and Hagstrom [33] showing complete agreement. The integrals have been calculated
using a Fortran 90 program code which uses quadruple precision (in our machine, an
accuracy of about 30 decimal digits). The program code has been thoroughly compared
with the three-electron and kinetic energy codes from Sims and Hagstrom showing
full agreement of 30 decimal digits (J. S. Sims, personal communication).

2 Theory

Let us define the Slater orbitals specified by the quantum numbers n,m and l with an
unnormalized radial part and orthonormal spherical harmonics:

φ∗(r) = rn−1e−αr Y m∗
l (θ, φ),

φ′(r) = rn′−1e−α′r Y m′
l ′ (θ, φ). (3)

The spherical harmonics in Condon and Shortley phases [50, p. 52] are given by:

Y m
l (θ, φ) = (−1)m

[
2l + 1

4π

(l − m)!
(l + m)!

]1/2

Pm
l (cos θ)eimφ, (4)

with the associated Legendre functions Pm
l (cos θ) defined:

Pm
l (cos θ) = sinm θ

dm+l

d(cos θ)m
(cos2 θ − 1)l . (5)
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The spherical harmonics and associated Legendre functions used along this work are
written explicitly in [51, p. 14], and defined as in Ref. [18]. They obey the condition:

Y m∗
l (θ, φ) = (−1)mY −m

l (θ, φ). (6)

We define the one-electron charge distributions by expanding or linearizing the
products of spherical harmonics with equal argument using the formula [18, Eq. 12]:

Y m∗
l (θ, φ)Y m′

l ′ (θ, φ) =
l+l ′∑

L=|l−l ′|

[
2L + 1

4π

]1/2

C L(l ′,m′; l,m)Y m′−m
L (θ, φ), (7)

where the Condon–Shortley coefficients [50, Eqs. 6–11] are defined by:

C L(l ′,m′, l,m) =
[

4π

2L + 1

] ∫
Y m′−m

L (θ, φ)Y m′∗
l ′ (θ, φ)Y m

l (θ, φ) sin θdθdφ, (8)

Li satisfies the triangular condition |li −l ′i | ≤ L ≤ li +l ′i and the restriction Li ≥ |Mi |.
The summation is done in steps of two: Li = |li −l ′i |, |li −l ′i |+2, . . . , li +l ′i −2, li +l ′i
and Mi = m′

i − mi . The lowest value of Li depends also on mi , for simplicity we
will use the notation |l − l ′| to recall on l and l ′. For discussion about the use of the
Condon and Shortley coefficients, see Appendix B and and Appendix in Ref. [33].

The charge distributions are:

�N ,L ,M (r) = φ∗(r)φ′(r)

=
l+l ′∑

L=|l−l ′|
(2L + 1)1/2C L(l ′,m′; l,m)r N−1e−ωr Y M

L (θ, φ), (9)

where N = n + n′ − 1, and the exponents ω = α+ α′. In the next we will use capital
letters N , L ,M for the quantum numbers of charge distributions, while low letters
n, l,m for the quantum numbers of the orbitals will be used.

The two-electron integrals are then defined:

I (N1, N2;ω1, ω2; ν)m1,m′
1,m2,m′

2
l1,l ′1,l2,l ′2

=
∫
�N1,L1,M1(r1)�N2,L2,M2(r2)r

ν
12dr1dr2, (10)

with the cases ν = −1, 1, 2 appearing in the Hy-CI method. After expanding the
charge distributions, the two-electron integrals are:

I (N1, N2;ω1, ω2; ν)m1,m′
1,m2,m′

2
l1,l ′1,l2,l ′2

=
l1+l ′1∑

L1=|l1−l ′1|

l2+l ′2∑
L2=|l2−l ′2|

2∏
i=1

(2Li + 1)1/2

4π
C Li (l ′i ,m′

i ; li ,mi )
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×
∞∫

0

r N1+1
1 e−ω1r1 dr1

×
π∫

0

2π∫
0

Y M1
L1
(θ1, φ1) sin θ1dθ1dφ1

×
∞∫

0

r N2+1
2 e−ω2r2 dr2

×
π∫

0

2π∫
0

rν12Y M2
L2
(θ2, φ2) sin θ2dθ2dφ2, (11)

where radial and angular integrations have to be made. The three-electron integrals
are defined:

J (N1, N2, N3;ω1, ω2, ω3; 1, µ)
m1,m′

1,m2,m′
2,m3,m′

3
l1,l ′1,l2,l ′2,l3,l ′3

=
∫
�N1,L1,M1(r1)�N2,L2,M2(r2)�N3,L3,M3(r3)r12rµ13dr1dr2dr3, (12)

with µ = −1, 1. After expanding the charge distributions, the three-electron integrals
are:

J (N1, N2, N3;ω1, ω2, ω3; 1, µ)
m1,m′

1,m2,m′
2,m3,m′

3
l1,l ′1,l2,l ′2,l3,l ′3

=
l1+l ′1∑

L1=|l1−l ′1|

l2+l ′2∑
L2=|l2−l ′2|

l3+l ′3∑
L3=|l3−l ′3|

3∏
i=1

(2Li + 1)1/2

(4π)3/2
C Li (l ′i ,m′

i ; li ,mi )

×
∞∫

0

r N1+1
1 e−ω1r1 dr1

π∫
0

2π∫
0

Y M1
L1
(θ1, φ1) sin θ1dθ1dφ1

×
∞∫

0

r N2+1
2 e−ω2r2 dr2

π∫
0

2π∫
0

r12Y M2
L2
(θ2, φ2) sin θ2dθ2dφ2

×
∞∫

0

r N3+1
3 e−ω3r3 dr3

π∫
0

2π∫
0

rµ13Y M3
L3
(θ3, φ3) sin θ3dθ3dφ3. (13)

The method of evaluation used here differs from the classical one. There are two steps,
the first is a rotation.

Consider the triangle formed by r1 and r2, see Fig. 1. The original idea from Calais
and Löwdin consisted on making a rotation of one coordinate axis, which allows to
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make a change of variable in the integral. Letting pass for a moment the z-axis through
the r1 coordinate, the variables are transformed as θ2 → θ12, and φ2 → φ12. This
may be understood graphically in Fig. 1. The volume element of electron 2 may be
then written:

dτ2 = r2
2 dr2 sin θ12dθ12dφ12. (14)

As θ12 is related to r12 through the cosine theorem:

r2
12 = r2

1 + r2
2 − 2r1r2 cos θ12, (15)

we can differentiate on the left hand side of the equation with respect to r12, and in
the other side with respect to θ12:

2r12dr12 = 2r1r2 sin θ12dθ12, (16)

obtaining the relation, which will be used to change the variable of integration:

sin θ12dθ12 = r12

r1r2
dr12. (17)

This equation will be used in the direct integration over the variable r12. With the
change of integration variable θ12 → r12, the integration domain changes as

∫ π
0 −→∫ r1+r2

|r1−r2|. There are two regions of integration: when r1 < r2 then |r1 − r2| = r2 − r1
and when r2 < r1 then |r1 − r2| = r1 − r2. The separation of domains of integration
proposed by Perkins [47] has proved to be the best way. Other strategies lead to the
same type of formulas. The domain of integration is divided into two parts:

J = D1 − D2 (18)

with:

D1 →
r1∫

0

dr2

r1+r2∫
r1−r2

dr12 +
∞∫

r1

dr2

r1+r2∫
r1−r2

dr12 →
∞∫

0

dr2

r2+r1∫
r1−r2

dr12, (19)

D2 →
∞∫

r1

dr2

r1+r2∫
r1−r2

dr12 −
∞∫

r1

dr2

r1+r2∫
r2−r1

dr12. (20)

The direct integration over the r12 coordinate [47] leads to the separation of the vari-
ables r1 and r2:

r1+r2∫
r1−r2

1

2
rν12dr12 = 1

(ν + 1)

	(ν+2)/2
∑
i=1

(
ν + 1

2i − 1

)
rν+2−2i

1 r2i−1
2 , (21)
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Fig. 1 Definition and rotation
of the coordinates of two
electrons in an atomic center

z

12
r1

θ12
r1

ϕ12

2

r2

where 	(ν + 2)/2
 is the floor function and denotes the integral part of (δ + 2)/2.
The rotation of the axis produces a rotation of the functions, in this case, spherical

harmonics. They suffer a transformation given by the rotation matrices, which can be
written:

Y m2
l2
(θ2, φ2) =

(
4π

2l + 1

)1/2 l2∑
m′

2=−l2

Y m2
l2
(θ1, φ1)Y

m′
2

l2
(θ12, φ12), (22)

In Appendix A this formula will be proved. Y
m′

2
l2
(θ12, φ12) can be written according

to Eq. 4 in terms of Legendre functions and em′
2φ12 . It is then possible to integrate

first over φ12 which is an independent variable of integration (see in Fig. 1, that for
a fixed r12, φ12 may vary from 0 to 2π ). This leads to m′

2 = 0 and the summation
reduces to one term containing PL(cos θ12), a Legendre polynomial. The Rodrigues
representation [52] provides the formula

Pl(x) = 1

2l l!
dl

dxl
(x2 − 1)l , (23)

which yields upon expansion:

Pl(x) = 1

2l

	l/2
∑
k=0

(−1)k
(

l

k

)(
2l − 2k

l

)
xl−2k, (24)

where 	l/2
 is the floor function. The argument x = cos θ12 can be expressed in radial
coordinates:

cos θ12 = (r2
1 + r2

2 − r2
12)

2r1r2
. (25)

In the next sections the integrations will be carried out in more detail.
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2.1 Three-electron integrals

The three-electron integrals are defined in Eqs. 12 and 13. Let us rotate the axis so that
r1 coincides with the z axis, use Eq. 17 and the angular function of electrons 2 and 3
transformed according to Eq. 22. Substituting into the integral Eq. 13, it is possible to
integrate first over φ12 and φ13 because they are independent. This leads to M ′

2 = 0
and M ′

3 = 0 and factors 2π :

J (N1, N2, N3;ω1, ω2, ω3; 1, µ)
m1,m′

1,m2,m′
2,m3,m′

3
l1,l ′1,l2,l ′2,l3,l ′3

=
l1+l ′1∑

L1=|l1−l ′1|

l2+l ′2∑
L2=|l2−l ′2|

l3+l ′3∑
L3=|l3−l ′3|

3∏
i=1

[(4π)(2Li + 1)]1/2

×C Li (l ′i ,m′
i ; li ,mi )

∞∫
0

r N1+1
1 e−ω1r1 dr1

∞∫
0

r N2+1
2 e−ω2r2 dr2

×
π∫

0

1

2
r12 PL2(cos θ12) sin θ12dθ12

×
∞∫

0

r N3+1
3 e−ω3r3 dr3

π∫
0

1

2
rµ13 PL3(cos θ13) sin θ13dθ13

×
π∫

0

2π∫
0

Y M1
L1
(θ1, φ1)Y

M2
L2
(θ1, φ1)Y

M3
L3
(θ1, φ1) sin θ1dθ1dφ1. (26)

This equation is valid for µ = −1, 1 and PL(cos θ) are the Legendre Polynomials. At
this point we could integrate over θ12 and θ13, but as their integrations are independent
of θ1, we solve first the three-fold integral over θ1 and φ1. Using Eq. 6 we write the
integral in the Condon and Shortley form Eq. 8. In addition, note that M1 = −M2−M3
is fulfill:

(−1)M2

π∫
0

2π∫
0

Y −M2∗
L2

(θ1,φ1)Y
M3
L3
(θ1,φ1)Y

M1
L1
(θ1,φ1) sin(θ1)dθ1dφ1

= (−1)M2δ(M1 + M2 + M3, 0)C L1(L2,−M2; L3,M3)

[
2L1 + 1

4π

]1/2

. (27)

Finally the three-electron integral:

J (N1, N2, N3;ω1, ω2, ω3; 1, µ)
m1,m′

1,m2,m′
2,m3,m′

3
l1,l ′1,l2,l ′2,l3,l ′3

= (−1)M2δ(M1 + M2 + M3, 0)
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×
l1+l ′1∑

L1=|l1−l ′1|

l2+l ′2∑
L2=|l2−l ′2|

l3+l ′3∑
L3=|l3−l ′3|

3∏
i=1

(2Li + 1)1/2

×C Li (l ′i ,m′
i ; li ,mi )(2L1 + 1)1/2C L1(L2,−M2; L3,M3)

×J (N1, N2, N3;ω1, ω2, ω3; 1, µ; L2, L3), (28)

where the angular integration has been performed and the radial three-electron intro-
duced. In the programmable expression Eq. 28 only some terms of the summations
will remain because of the Kronecker δ factors and the Ck coefficients.

The radial three-electron integrals can be defined in two ways, for µ = −1, 1:

J (N1, N2, N3;ω1, ω2, ω3; 1, µ; L2, L3)

=
∞∫

0

r N1+1
1 e−ω1r1 dr1

∞∫
0

r N2+1
2 e−ω2r2 dr2

×
π∫

0

1

2
r12 PL2(cos θ12) sin θ12dθ12

∞∫
0

r N3+1
3 e−ω3r3 dr3

×
π∫

0

1

2
rµ13 PL3(cos θ13) sin θ13dθ13,

=
∞∫

0

r N1+1
1 e−ω1r1 dr1

∞∫
0

r N2+1
2 e−ω2r2 dr2

r1+r2∫
|r1−r2|

1

2

r2
12

r1r2
PL2(cos θ12)dr12

×
∞∫

0

r N3+1
3 e−ω3r3 dr3

r1+r3∫
|r1−r3|

1

2

rµ+1
13

r1r3
PL3(cos θ13)dr13, (29)

We are going to integrate over the coordinates of one electron in order to obtain an
integral of lower order, a two-electron integral. As we are interested in the integrals

of type 〈r12r13〉 , and
〈

r12
r13

〉
, we will integrate over electron 2, whose position does not

vary in both cases. Note that Perkins [47] did not discuss the second kind of integral,

but it has been proven by the author, that Perkins’ formulas are valid for the case
〈

r12
r13

〉
.

During the integration we are not interested in the coordinates of electron 3 which will
not be affected.

Expanding the Legendre Polynomials PL2(cos θ12) according to Eq. 24, using the
Binomial theorem twice, with indices q, p, we can directly integrate over the r12 var-
iable. We treat D1 and D2 of Eqs. 19, 20 separately. For the first part D1 we have to
evaluate the r12 integral:
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r1+r2∫
r1−r2

1

2
r2+2q

12 dr12 = 1

(2q + 3)

q+2∑
i=1

(
2q + 3

2i − 1

)
r2q+4−2i

1 r2i−1
2 . (30)

r2 is not linked to any other variable, and therefore the integration over r2 can be
carried out leading to a A(n, α) integral defined in Sect. 2.4. Substituting into D1 and
rewriting the integral over r1 and r3 as a two-electron integral, which will be defined
in the next Sect. 2.3, we finally have:

D1 =
	L2/2
∑

k=0

L2−2k∑
q=0

L2−2k−q∑
p=0

(−1)k+q

22L2−2k(2q + 3)

(
L2

k

)(
2L2 − 2k

L2

)(
L2 − 2k

q

)

×
(

L2 − 2k − q

p

)
×

q+2∑
i=1

(
2q + 3

2i − 1

)
A(N2 − 1 + 2k + 2p + 2i − L2, ω2)

×I (N1 + L2 + 2 − 2k − 2p − 2i, N3;ω1, ω2;µ; L3). (31)

To calculate the part D2 we perform the direct integration of r12, which leads to:

1

(2q + 3)

1

2

[
(r2 − r1)

2q+3 − (r1 − r2)
2q+3

]
, (32)

which leads upon expansion:

1

(2q + 3)
(r2 − r1)

2q+3. (33)

Substituting this into Eq. 29 and making the change of variable r2 − r1 = y, we use
the Binomial theorem to expand the powers of r2 with r2 = y + r1:

(r1 + y)N2+2k+2p−L2 =
N2+2k+2p+1−L2∑

j=1

(
N2 + 2k + 2p + 1 − L2

j − 1

)

×r N2+2k+2p−L2− j
1 y j−1. (34)

Note that now the integral over y leads to a A(n, β) integral. As the integrals over r1
and r3 can be rewritten as a basic two-electron integral, we obtain the part D2, which
together with D1 lead to:

J (N1, N2, N3;ω1, ω2, ω3; 1, µ; L2, L3)

=
	L2/2
∑

k=0

L2−2k∑
q=0

L2−2k−q∑
p=0

(−1)k+q

22L2−2k(2q + 3)

×
(

L2

k

)(
2L2 − 2k

L2

)(
L2 − 2k

q

)(
L2 − 2k − q

p

)

123



J Math Chem (2009) 46:24–64 35

×
⎧⎨
⎩

q+2∑
i=1

(
2q + 3

2i − 1

)
A(N2 − 1 + 2k + 2p + 2i − L2, ω2)

×I (N1 + L2 + 2 − 2k − 2p − 2i, N3;ω1, ω2;µ; L3)

−
N2+2k+2p+1−L2∑

j=1

(
N2 + 2k + 2p − L2

j − 1

)
A(2q + 2 + j;ω2)

× I (N1 + N2 − 2q − j − 1, N3;ω1 + ω2, ω3;µ; L3) } (35)

The three-electron radial integral is a linear combination of two-electron ones. For
L2 = 0, then k = q = p = 0, the integral reduces to a radial one and agrees with
Eq. 20 of Perkins [47]. Eq. 54 together with Eq. 40 give the total three-electron integral.

The ocurring A(n, α) auxiliary integrals in Eq. 35 have always a positive argument
n because by definition N2 ≥ L2 + 1, and therefore these integrals have solution.
The first arguments of the I integrals can be negative, but nevertheless they can be
evaluated as we will in Sect. 2.3. Equations 28 and 35 allow to calculate integrals
including s-, p-, d-, f -, g-, h- . . . Slater orbitals with great accuracy. In Table 1,
a number of calculations of Hy-CI three-electron integrals are shown. The integral
values have been thoroughly compared with the ones of Sims and Hagstrom (J. S.
Sims, personal communication), which were obtained using auxiliary three-electron
integrals, showing fully agreement in more than 30 digits. Many integrals have also
been calculated with a Maple [49] program using 100 digits of accuracy.

2.2 Two-electron integrals

The two-electron integrals occurring in the Hy-CI method from Eqs. 10 to 11 after
doing the rotation of the spherical harmonics in Eq. 22 as in the case of three-electron
integrals are:

I (N1, N2;ω1, ω2; ν)m1,m′
1,m2,m′

2
l1,l ′1,l2,l ′2

=
l1+l ′1∑

L1=|l1−l ′1|

l2+l ′2∑
L2=|l2−l ′2|

×
2∏

i=1

(2Li + 1)1/2C Li (l ′i ,m′
i ; li ,mi )

×
∞∫

0

r N1+1
1 e−ω1r1 dr1

∞∫
0

r N2+1
2 e−ω2r2 dr2

×
π∫

0

1

2
rν12 PL2(cos θ12) sin θ12dθ12
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×
π∫

0

2π∫
0

Y M1
L1
(θ1, φ1)Y

M2
L2
(θ1, φ1) sin θ1dθ1dφ1. (36)

In the integrations over θ1 and φ1 we use the complex conjugate relation (6) and the
orthogonality property of the spherical harmonics:

π∫
0

2π∫
0

Y M1
L1
(θ1, φ1)Y

M2
L2
(θ1, φ1)sinθ1dθ1dφ1 =(−1)M1δ(M1 + M2, 0)δ(L1, L2).

(37)

After angular integration the two-electron integrals are:

I (N1, N2;ω1, ω2; ν)m1,m′
1,m2,m′

2
l1,l ′1,l2,l ′2

=(−1)M1δ(M1+M2, 0)

l1+l ′1∑
L1=|l1−l ′1|

l2+l ′2∑
L2=|l2−l ′2|

δ(L1, L2)

×
2∏

i=1

(2Li + 1)1/2C Li (l ′i ,m′
i ; li ,mi )

×I (N1, N2;ω1, ω2; ν; L2) (38)

where I (N1, N2;ω1, ω2; ν; L2) are the basic radial two-electron integrals defined in
the next section.

The powers which are of interest for the calculations are ν = −1, 1, 2. The integra-
tion of the angular part leads to angular coefficients and basic two-electron integrals.
Due to the presence of Kronecker δ and Condon and Shortley coefficients many terms
of the summation vanish.

The computer program for the two-electron integrals has been checked by compari-
son with values of Sims and Hagstrom (J. S. Sims, personal communication), showing
full agreement. In Table 2, values of two-electron integrals including s-, p-, d-, f -,
g-, h- . . . Slater orbitals are given.

2.3 Basic two-electron integrals

The basic two-electron integrals are defined:

I (N1, N2;ω1, ω2; ν; L)

=
∞∫

0

r N1+1
1 e−ω1r1 dr1

∞∫
0

r N2+1
2 e−ω2r2 dr2
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Table 2 Two-electron integrals 〈rν12〉: the charge distributions are constructed with the exponents α= 1.40
for orbitals with ′′, otherwise α= 2.86

Charge distribution N1 N2 ω1 ω2 ν I (N1, N2;ω1, ω2; ν)m1,m
′
1,m2,m

′
2

l1,l
′
1,l2,l

′
2

(1s1s, 1s1s) 1 1 5.72 5.72 1 0.87350 59088 73392 66795 94434 16545 × 10−4

(2p02p′′
0 , 1s1s) 3 1 4.26 5.72 1 0.23712 77012 83727 94893 45982 27493 × 10−3

(2p01s, 1s2p′′
0 ) 2 2 5.72 4.26 1 −0.17796 44617 73516 30848 86700 45323 × 10−4

(2p02p0, 2p02p′′
0 ) 3 3 5.72 4.26 1 0.97016 96970 53409 80887 31889 20964 × 10−4

(2p12p−1, 2p−12p′′
1 ) 3 3 5.72 4.26 1 −0.20051 32729 67598 61632 25838 25468 × 10−5

(2p12p1, 2p−12p′′−1) 3 3 5.72 4.26 1 0.98019 53607 01789 73968 93181 12237 × 10−4

(3d03d0, 1s1s) 5 1 5.72 5.72 1 0.51354 54639 45183 11307 64076 09391 × 10−4

(3d01s, 1s3d0) 3 3 5.72 5.72 1 −0.34621 04251 31584 12117 51062 53522 × 10−6

(3d02p0, 2p03d0) 4 4 5.72 5.72 1 −0.23450 66528 11406 61493 93940 12732 × 10−5

(3d12p0, 2p03d1) 4 4 5.72 5.72 1 −0.17686 25593 82904 43026 15541 43680 × 10−5

(3d03d0, 3d03d0) 5 5 5.72 5.72 1 0.21880 39161 87383 57280 73971 78995 × 10−4

(3d23d2, 3d23d2) 5 5 5.72 5.72 1 0.21914 51787 67998 99418 86552 06912 × 10−4

(4 f01s′′, 4 f01s′′) 4 4 4.26 4.26 1 −0.42288 64432 50031 61694 57281 30649 × 10−5

(4 f32p′′
1 , 2p′′

1 4 f3) 5 5 4.26 4.26 1 −0.47240 74550 54197 25212 29823 18397 × 10−4

(4 f03d ′′
0 , 4 f03d ′′

0 ) 6 6 4.26 4.26 1 −0.76004 44446 71947 13346 18437 83074 × 10−3

(4 f04 f0, 4 f04 f0) 7 7 5.72 5.72 1 0.81786 53166 09740 77823 76900 79206 × 10−4

(5g44 f3, 5g−44 f−3) 8 8 5.72 5.72 1 0.53430 52020 93629 62168 95761 47448 × 10−4

(5g−45g−4, 5g−45g−4) 9 9 5.72 5.72 1 0.74714 59475 99715 71165 95876 90193 × 10−3

(5g06h0, 6h05g0) 10 10 5.72 5.72 1 −0.42035 43165 82386 40055 84672 50207 × 10−3

(6h−56h−5, 6h−56h−5) 11 11 5.72 5.72 1 0.14275 01974 66940 02242 59848 77916 × 10−1

(1s2p′′−1, 1s2p1) 2 2 4.26 5.72 2 0.44699 54319 37036 34511 44302 75528 × 10−4

(3d13d1, 3d−13d−1) 5 5 5.72 5.72 2 0.63160 92982 07984 62679 48473 21628 × 10−4

(4 f04 f0, 4 f04 f0) 7 7 5.72 5.72 2 0.49113 62805 26346 16780 00079 84461 × 10−3

(5g45g4, 5g45g4) 9 9 5.72 5.72 2 0.41906 26280 30062 29737 33646 47985 × 10−2

×
π∫

0

1

2
rν12 PL(cos θ12) sin θ12dθ12

=
∞∫

0

r N1+1
1 e−ω1r1 dr1

∞∫
0

r N2+1
2 e−ω2r2 dr2

×
r1+r2∫

|r1−r2|

1

2

rν+1
12

r1r2
PL(cos θ12)dr12, (39)

the second definition is obtained after the change of variable Eq. 17. For L = 0, the
integrals reduce to the Perkins’ two-electron radial integrals [47, Eq. 1]. The Eq. 39
agree up to a factor 1/2 with Drake’s [45, Eqs. 7,42] and Yan and Drake’s [46, Eq. 4]
formulas obtained after angular integration in two-electron integrals. In this paper
Eq. 39 have been obtained independently by integrating the three-electron integrals
over the coordinates of one electron. Also we will evaluate these integrals in terms of
auxiliary V integrals. Yan and Drake [46] solved I integrals with negative powers of
ri using hypergeometric functions.
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The most important cases are the powers ν = −1, 1, 2, and they are here derived
separately to obtain efficient programmable expressions. Although general expres-
sions of two-electron integrals can be found in the literature, it is of great importance
to use those ones which do not lead to unwanted integrals like A(n, α) with n < 0. In
the first case, ν = 1, we expand r12 in terms of Legendre Polynomials [36], collecting
the terms in the form [47,53]:

r12 =
∞∑

q=0

(
− 1

2q − 1

sq
12

gq−1
12

+ 1

2q + 3

sq+2
12

gq+1
12

)
Pq(cos θ12) (40)

where s12 is the smallest of r1 and r2 and g12 is the greatest of r1 and r2. There are
two regions of integration: r1 < r2 and r2 < r1. Substituting r12 into the integral and
integrating over θ12, only the term q = L of the expansion remains. Grouping the
powers together and writing the resulting integrals in the form of V auxiliary ones:

I (N1, N2;ω1, ω2; 1; L) = δ(L , q)

(2L + 2)

×
[
− 1

(2L − 1)
[V (N1 + L + 1, N2 − L + 2;ω1, ω2)

+ V (N2 + L + 1, N1 − L + 2;ω2, ω1)]

+ 1

(2L + 3)
[V (N1 + L + 3, N2 − L;ω1, ω2)

+ V (N2 + L + 3, N1 − L;ω2, ω1)]

]
(41)

The I (N1, N2;ω1, ω2; 1; L) are defined for N1 + L ≥ −1 and N2 + L ≥ −1 so that
the first argument k of V (k, l;α, β) is positive while the second l can be negative,
with the restriction k + l ≤ −1. In the calculation of all two-electron Hy-CI integrals
these conditions are fulfilled. As the three-electron integrals are linear combinations
of basic I (N1, N2;ω1, ω2; 1; L), note that N1 can take negative values, but these in
the practice, for three-electron integrals, are such that N1 +L ≥ −1 is always fulfilled.

In the case ν = −1, the integrals I (N1, N2;ω1, ω2;−1; L) are the usual two-elec-
tron integrals of the CI method.

I (N1, N2;ω1, ω2;−1; L) =
∞∫

0

r N1+1
1 e−ω1r1 dr1

∞∫
0

r N2+1
2 e−ω2r2 dr2

×
π∫

0

1

2
PL(cos θ12)

1

r12
sin θ12dθ12. (42)
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Using the Laplace expansion written as [36]:

1

r12
=

∞∑
q=0

Pq(cos θ12)
sq

12

gq+1
12

, (43)

and doing similar steps as in the case before, we finally have:

I (N1, N2;ω1, ω2;−1; L) = δ(L , q)

2(2L + 2)
[V (N1 + L + 1, N2 − L;ω1, ω2)

+ V (N2 + L + 1, N1 − L;ω2, ω1)] . (44)

Also here the integrals are defined for N1 + L ≥ −1 and N2 + L ≥ −1. In the practice,
this condition is always fulfilled in the calculations of two-, and three-electron inte-
grals.

If ν = 2 we use the cosine law written as [47]:

r2
12 = (s2

12 + g2
12)P0(cos θ12)− 2s12g12 P1(cos θ12) (45)

after integration over θ12 only the terms L = 0, 1 remain, respectively. We finally
obtain:

I (N1, N2;ω1, ω2; 2; L) = δ(L , 0) [A(N1 + 3, ω1) A(N2 + 1, ω2)

+A(N2 + 3, ω2)A(N1 + 1, ω1)

−2

3
A(N1 + 2, ω1) A(N2 + 2, ω2)] . (46)

The A(n, α) integrals can always be calculated because by definition N1, N2 ≥ 0, for
L = 0.

The basic integrals show the symmetry property:

I (N1, N2;ω1, ω2; ν; L) = I (N2, N1;ω2, ω1; ν; L), (47)

therefore N1 or N2 can be negative. If both N1 and N2 are negative at the same time,
the conditions of V (k, l;α, β): k > 0 and k + l ≥ −1 lead to N1+ N2 ≥ −2.

Using Eqs. 41, 44, 46 it is possible to calculate integrals including s-, p-, d-, f -,
g-, . . . Slater orbitals with great accuracy. No integrals A(n, α) with n < 0 appear,
and therefore there is no loss of precision. Values of the basic two-electron integrals
used in the calculations of three-electron integrals are given in Table 3. The integrals
I appear repeatedly during the calculations. Computationally favorable would be to
figure out the exponent combinations, calculate them a priori and store all necessary
I integrals.

The radial J three-electron integrals calculated using the basic two-electron I inte-
grals in terms of V (k, l;α, β) auxiliary integrals, have 30 digits accuracy, when com-
paring with values obtained with Maple.
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Table 3 Some examples of calculation of basic two-electron integrals

N1 N2 ω1 ω2 ν L I (N1, N2;ω1, ω2; ν; L)

1 2 5.72 4.26 1 0 0.13179 11369 69018 83310 68706 84572 × 10−3

0 2 9.98 4.26 1 0 0.17682 81603 30135 79087 03366 70515 × 10−3

2 1 5.72 4.26 1 0 0.14718 99890 51889 92488 52346 77136 × 10−3

3 4 5.72 4.26 1 1 −0.18998 03914 43413 57815 12859 36347 × 10−4

−1 4 5.72 4.26 1 1 −0.19826 83457 14215 25274 04093 73665 × 10−3

−3 4 5.72 4.26 1 1 −0.13036 00068 45803 00241 35411 44804 × 10−4

6 5 5.72 4.26 1 2 −0.52265 20625 88995 64851 83471 95040 × 10−5

−1 4 5.72 4.26 1 3 −0.16818 38115 88958 59965 24969 05666 × 10−5

−3 4 5.72 4.26 1 3 −0.13036 00068 45803 00241 35411 44804 × 10−4

6 5 5.72 4.26 1 4 −0.56347 95909 58278 20534 47071 54913 × 10−6

4 5 5.72 4.26 −1 0 0.62620 99559 50048 60166 25857 84776 × 10−4

4 5 5.72 4.26 −1 2 0.56268 78161 98078 67208 72797 57339 × 10−5

8 5 5.72 4.26 −1 4 0.58184 85531 61345 14905 89423 73621 × 10−5

2.4 Auxiliary integrals

A characteristic of this method of integration is that for low quantum numbers of N1 and
high quantum numbers of N2, N3 in the three-electron integrals J (N1, N2, N3;ω1, ω2,

ω3; 1, µ; L2, L3) of Eq. 35, the integral I (n,m;ω1, ω2; ν; l),may take negative pow-
ers of n or m. Perkins repeated the integration procedure in the two-electron integrals
and obtained a sum of products of two A(n, α) auxiliary integrals, one of them with
negative n. The auxiliary integrals A(n, α) are defined for n ≥ 0:

A(n, α) =
∞∫

0

rn
1 e−αr1 dr1 = n!

αn+1 . (48)

A(n, α) auxiliary integrals with negative n have no solution alone, but appropriate
combinations of them lead to a solution including logarithmic terms [47]. In this
method we have overcome this difficulty by calculating the I (n,m;ω1, ω2; ν; l) inte-
grals in terms of auxiliary two-electron integrals V (k, l;α, β) with negative l and
k + l ≥ −1, which we call here non-trivial to distinguish them from the ones with
both positive k, l.

The basic integrals I (n,m;ω1, ω2; ν; l) are then defined for n+l ≥ −1, m+l ≥ −1
and n +m ≥ −2. The A(n, α) integrals appearing in Eq. 35 never have a negative n as
N2 − 1 ≤ L2 is always fulfilled. Therefore the need of logarithms is avoided, gaining
in speed and accuracy (although logarithms can be also calculated accurately within
the used computer precision [54]). In paper II, we will see that in some cases of one
type of four-electron integrals it is necessary to combine groups of A(n, α) integrals
with negative n. Fortunately, the major part of four-electron integrals can be solved in
terms of non-trivial V (k, l;α, β).

Also it is important for the total accuracy that we can calculate the positive inte-
grals with more than 30–32 digits accuracy. If we use the technique of expanding
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I (n,m;ω1, ω2; ν; l) in terms of A(n, α) there is a substraction of values of similar
order (see Eq. 35) and the accuracy reduces to 26–28 digits.

The two-electron V (k, l;α, β) auxiliary integrals are defined:

V (k, l;α, β) =
∫ ∫

0<r1<r2<∞
rk

1 rl
2e−αr1 e−βr2 dr1dr2

=
∞∫

0

rk
1 e−αr1 dr1

∞∫
r1

rl
2e−βr2 dr2. (49)

for k, l positive, these integrals are easier and well-known. The V (k, l;α, β) integrals
were usually calculated using recursion relations first given by James and Coolidge
[22], which due to substraction were not always absolutely stable. We have used the
more recent direct calculation of V (k, l;α, β) auxiliary integrals from Frolov and
Smith [55, Eq. 5] that consists on an explicit sum of products of A(n, α) auxiliary
integrals. The formula is very stable because it consists on a summation and therefore
no loss of precision can appear:

V (k, l;α, β) =
l∑

l ′=0

(
l

l ′

)
A(l ′, α)A(k + l − l ′, α + β), k, l ≥ 0 (50)

The formula was obtained by integrating over the coordinates of v after the substitution
u = x and y = u + v on Eq. 49:

V (k, l;α, β) =
∞∫

0

uke−(α+β)udu

∞∫
0

(u + v)l e−βvdv, (51)

and turning back the substitution of u, see Eqs. 4–6 of [55].
The second type of auxiliary integrals are the non-trivial ones defined for k+l ≥ −1

and k > 0 and used for the case l negative. They have been evaluated by Sims and
Hagstrom [38, Eq. 33] with high accuracy using the so-called Larsson sum [21, Eq. 34],

V (k, l;α, β) =
∑
q=1

αq−1k!
(k + q)! A(k + l + q;α + β), k + l ≥ −1, k > 0, l < 0

(52)

Sims and Hagstrom checked these integrals for large positive and negative powers as
so as for a large spectrum of s = α/(α+β), when s was very close to 1 and 0, being α,
β exponents. Further, the author has checked the non-trivial V (k, l;α, β) calculated
with the Larsson sum against direct integration using the Maple program [49] at the
required accuracy of the following equivalent formula of V (k, l;α, β):
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V (k, l;α, β) =
∞∫

0

rl
2e−βr2 dr2

r2∫
0

rk
1 e−αr1 dr1 (53)

the first integration over r1 leads to a polynomial in r2, which combined with the
negative l leads to an integrable expression. The accuracy of more than 30 decimal
digits of the Larsson sum was confirmed. In addition, Eq. 52 is computationally very
stable. For extreme values of s the summation converges slower, the sum limit in the
program has to be put very high to ensure convergence.

More details of the non-trivial V (k, l;α, β) integral can be found in Ref. [38]. We
have used in this paper a computer program Vkl from Sims and Hagstrom to evaluate
these integrals. In paper II of this series the four-electron integrals occurring in Hy-CI
calculations will be evaluated in terms of these two kinds of V (k, l;α, β) auxiliary
integrals.

These integrals avoid the use of combinations of A(n, α) with n< 0 [47] which
have the disadvantages: (1) they lead to logarithmic terms which reduce the speed of
the program; (2) they lead to substractions which reduce the accuracy of the calcula-
tions; and the not less important (3) these combinations are difficult to be programmed,
because they have to be recognized, extracted from the computations and calculated
appropriately, leading to many unwanted errors. The non-trivial V (k, l;α, β) provide
a powerful algorithm to calculate the basic I (n,m;ω1, ω2; ν; l) integrals.

In an actual calculation, the V (k, l;α, β) auxiliary integrals should be computed
for the necessary exponents at the beginning of the calculation and stored in matrices
or vectors.

3 Kinetic energy and nuclear attraction three-electron integrals

In this section we treat the kinetic energy integrals appearing in the Hy-CI method, the
power of ri j in the basis function set to 1. For any atomic number N ≥ 3 the kinetic
energy integrals are of three-electron type. The method used here is to apply the Ham-
iltonian as defined in Ref. [48, Eq. 36] to the wave function. Sims and Hagstrom [33]
developed the kinetic energy integrals using the transformation of Kolos and Roothaan
[56] which partially avoids the differentiation with respect to ri j terms appearing on
the right hand side of the matrix elements. Here we will use the Hamiltonian written
in polar and interelectronic coordinates and will solve the resulting integrals in terms
of basic two-electron integrals .

Some terms of the Hamiltonian Ref. [48, Eq. 36] vanish when the wave function
does not contain any, or more than one ri j , or this one is set to the power 1. The kinetic
energy terms are separable into a sum of one-electron kinetic energy terms. Following
the technique of Ref. [33] we evaluate the kinetic energy of electron 1.

Ĥ1 = T̂R1 + T̂θ1 + V̂1 (54)
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Let us separate the kinetic energy operator into radial and angular parts. The radial
kinetic energy operator of electron 1 for a Hy-CI wave function [48, Eq. 21]:2

T̂R1 = −1

2

∂2

∂r2
1

− 1

r1

∂

∂r1
−

n∑
j=2

2

r1 j

∂

∂r1 j
− 1

2

n∑
j=2

r2
1 + r2

1 j − r2
j

r1r1 j

∂2

∂r1∂r1 j
(55)

and the angular one:3

T̂θ1 = 1

2

L̂2
1

r2
1

−
n∑

j=2

(
r j

r1r1 j

cos θ j

sin θ1
+ 1

2
cot θ1

r2
1 j − r2

1 − r2
j

r2
1 r1 j

)
∂2

∂θ1∂r1 j

−
n∑

j=2

r j

r1r1 j

sin θ j

sin θ1
sin (φ1 − φ j )

∂2

∂φ1∂r1 j
. (56)

If the wave function on the right hand side has no ri j term, the cross terms of the
operator vanish. The angular momentum operator for electron 1 is:

L̂2
1 = − ∂2

∂θ2
1

− 1

sin θ1
2

∂2

∂φ2
1

− cot θ1
∂

∂θ1
, (57)

and the potential energy operator is:

V1 = − Z

r1
. (58)

Let us evaluate as an example the potential and kinetic energy integrals where on the
right hand side a term with r13 appears and on the left hand side after permutations,
for example, a term r12 appears. The orbitals are defined in Eq. 3 and the charge dis-
tributions in Eq. 9. Note that the operator does not affect the electrons which are not
involved. To evaluate the nuclear attraction potential energy is simple:

IPE1 =
〈
φ(r1)φ(r2)φ(r3)r12|V̂1|φ(r1)φ(r2)φ(r3)r13

〉

= −Z J (N1 − 1, N2, N3;ω1, ω2, ω3; 1, 1)
m1,m′

1,m2,m′
2,m3,m′

3
l1,l ′1,l2,l ′2,l3,l ′3

, (59)

with Z the atomic nuclear charge (see Table 4).

2 The radial kinetic energy operator [48, Eq. 22] is obtained summing up the kinetic energy operators of
the single electrons [48, Eq. 21]. Unfortunaltey there is a typo in Eqs. 21 and 22 of Ref. [48], the correct

factor is 2 and the term is −
5∑

j �=1

2
r1 j

∂ψ
∂r1 j

, following Eq. 18. Also the angular part of the kinetic energy is

a sum of the angular kinetic energy of the single electrons, see [48, Eqs. 34,35].
3 Note that the kinetic energy operator can be separated into radial and angular parts although it contains
ri j . Only when the wave function contains simultaneously ri j and angular orbitals, the cross angular terms
of Eq. 74 will not vanish.
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Table 4 Potential energy three-electron integrals of electron 1. α= 1.40 for orbitals with ′′, otherwise
α= 2.86. Nuclear charge Z = 5

Charge distribution ω1 ω2 ω3 IPE

(1s1s, 1s1s′′, 1s1s′′) 5.72 4.26 4.26 −0.69100 95936 46419 09356 13655 99564 × 10−4

(1s1s, 1s2s′′, 1s2s′′) 5.72 4.26 4.26 −0.53283 14868 67595 50711 36514 66127 × 10−4

(2p02p0, 1s1s, 2s′′2s′′) 5.72 5.72 2.80 −0.73313 52900 41262 72453 96580 78579 × 10−4

(1s1s, 1s2p′′
0 , 1s2p′′

0 ) 5.72 4.26 4.26 −0.68999 63860 56840 93636 96339 64867 × 10−6

(1s2p0, 1s1s, 1s2p′′
0 ) 5.72 5.72 4.26 0.12500 51749 17197 56097 52328 50070 × 10−5

(1s3d ′′
0 , 1s1s, 1s3d ′′

0 ) 4.26 5.72 4.26 0.52719 55897 60854 52339 56333 42107 × 10−6

(2p02p′′
0 , 1s1s, 2p02p′′

0 ) 4.26 5.72 4.26 −0.29216 32946 78764 19887 16235 79072 × 10−4

(1s1s, 2p02p′′
0 , 2p02p′′

0 ) 5.72 4.26 4.26 −0.68762 04243 12947 45439 50115 40877 × 10−4

(2p02p0, 2p02p0, 2p02p0) 5.72 5.72 5.72 −0.55447 61504 49669 84754 16741 12410 × 10−6

(3d03d ′′
0 , 1s1s, 3d03d ′′

0 ) 4.26 5.72 4.26 −0.10336 75817 73370 27913 80923 00882 × 10−3

(3d03d ′′
0 , 3d03d0, 3d03d ′′

0 ) 4.26 5.72 4.26 −0.41413 54719 97577 10716 12343 88915 × 10−4

(2p12p′′
1 , 1s1s, 1s1s) 4.26 5.72 5.72 −0.14174 70275 44922 47771 29056 60314 × 10−4

(3d23d2, 1s1s′′, 2s2s′′) 5.72 4.26 4.26 −0.15996 14680 55114 15682 12521 84200 × 10−5

(2p12p′′
1 , 1s1s, 2p12p′′

1 ) 4.26 5.72 4.26 −0.29532 64682 17329 32601 19973 79124 × 10−4

(2p12p1, 2p12p′′
1 , 2p12p′′

1 ) 5.72 4.26 4.26 −0.15693 52016 51117 37368 62915 15878 × 10−4

(3d13d1, 2p12p′′
1 , 3d13d ′′

1 ) 5.72 4.26 4.26 −0.25764 29358 27244 72887 46299 85635 × 10−4

(3d23d2, 3d13d ′′
1 , 3d23d ′′

2 ) 5.72 4.26 4.26 −0.51838 65767 18146 23857 27470 71550 × 10−5

(2p02p0, 2p02p′′−1, 2p02p′′
1 ) 5.72 4.26 4.26 0.32031 53239 96744 65098 34059 34450 × 10−8

(3d03d0, 3p03p′′−1, 3d03d ′′
1 ) 5.72 4.26 4.26 0.36055 48794 79114 51535 69167 69702 × 10−8

(2p−12p′′−1, 1s1s, 1s1s) 4.26 5.72 5.72 −0.14174 70275 44922 47771 29056 60314 × 10−5

(3d−23d−2, 1s1s, 3d−23d ′′−2) 5.72 5.72 4.26 −0.12195 71137 43742 70748 10915 97961 × 10−5

For the kinetic energy we have to evaluate:

IKE1 =
〈
φ(r1)φ(r2)φ(r3)r12|T̂R1 + T̂θ1 |φ(r1)φ(r2)φ(r3)r13

〉
. (60)

The radial part:

IKE,R1 =
〈
φ(r1)φ(r2)φ(r3)r12|T̂R1 |φ(r1)φ(r2)φ(r3)r13

〉
, (61)

performing the derivatives given by the operator Eq. 55, combining terms, and using
the definition of the three-electron integrals Eqs. 12 and 13, it can be straightforward
obtained:

IKE,R1 = − (n
′
1

2 − 1)

2
J (N1 − 2, N2, N3;ω1, ω2, ω3; 1, 1)

m1,m′
1,m2,m′

2,m3,m′
3

l1,l ′1,l2,l ′2,l3,l ′3

+ (2n′
1 + 1)α′

1

2
J (N1 − 1, N2, N3;ω1, ω2, ω3; 1, 1)

m1,m′
1,m2,m′

2,m3,m′
3

l1,l ′1,l2,l ′2,l3,l ′3

−α
′
1

2

2
J (N1, N2, N3;ω1, ω2, ω3; 1, 1)

m1,m′
1,m2,m′

2,m3,m′
3

l1,l ′1,l2,l ′2,l3,l ′3

− (n
′
1 + 1)

2
J (N1, N2, N3;ω1, ω2, ω3; 1,−1)

m1,m′
1,m2,m′

2,m3,m′
3

l1,l ′1,l2,l ′2,l3,l ′3
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+α
′
1

2
J (N1 + 1, N2, N3;ω1, ω2, ω3; 1,−1)

m1,m′
1,m2,m′

2,m3,m′
3

l1,l ′1,l2,l ′2,l3,l ′3

− (1 − n′
1)

2
J (N1 − 2, N2, N3 + 2;ω1, ω2, ω3; 1,−1)

m1,m′
1,m2,m′

2,m3,m′
3

l1,l ′1,l2,l ′2,l3,l ′3

−α
′
1

2
J (N1 − 1, N2, N3 + 2;ω1, ω2, ω3; 1,−1)

m1,m′
1,m2,m′

2,m3,m′
3

l1,l ′1,l2,l ′2,l3,l ′3
(62)

The J (N1, N2, N3;ω1, ω2, ω3; 1, µ; L2, L3) integrals are given by Eqs. 28 and 35.
The first term of the angular kinetic operator can be easily evaluated by means of the
eigenvalue equation of the square of the angular momentum operator:

IKE,θ1,L =
〈
φ(r1)φ(r2)φ(r3)r12|1

2

L̂2
1

r2
1

|φ(r1)φ(r2)φ(r3)r13

〉

= 1

2
l ′1(l ′1 + 1)J (N1 − 2, N2, N3;ω1, ω2, ω3; 1, 1)

m1,m′
1,m2,m′

2,m3,m′
3

l1,l ′1,l2,l ′2,l3,l ′3
, (63)

where l ′1 is the quantum number of φ(r1).
More difficult is the evaluation of the cross terms of Eq. 56. For our example, the

summation cancels except for j = 3. Separating radial from angular differentiation,
we have to calculate the derivatives of the angular part of electron 1 on the right hand
side wave function using the operators of Eq. 56 and to solve the integrals:

IKE,θ1,1 = −
〈
φ(r1)φ(r2)φ(r3)r12| r3

r1r13

cos θ3

sin θ1

∂2

∂θ1∂r13
|φ(r1)φ(r2)φ(r3)r13

〉
, (64)

IKE,θ1,2 = −1

2

〈
φ(r1)φ(r2)φ(r3)r12| (r

2
13 − r2

1 − r2
3 )

r2
1 r13

cot θ1

× ∂2

∂θ1∂r13
|φ(r1)φ(r2)φ(r3)r13

〉
, (65)

IKE,φ1,3 = −
〈
φ(r1)φ(r2)φ(r3)r12| r3

r1r13

sin θ3

sin θ1
sin (φ1 − φ3)

× ∂2

∂φ1∂r13
|φ(r1)φ(r2)φ(r3)r13

〉
. (66)

To evaluate these contributions to the kinetic energy, it is necessary to make the deriv-
atives of the spherical harmonics with respect to the interelectronic coordinates and
afterwards to use recursion relations. To avoid singularities we have to distinguish the
cases of the quantum number m of the electron in which the operator acts: m′

1 = 0 and
m′

1 �= 0. We make for the integrals Eqs. 64–66 the restriction l ′1 = 1, 2 in order to avoid
extremely large expressions in this paper. The extension to higher l ′1 is straightforward.
The rest of the quantum numbers can take any value.
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Using the first term of Eq. C.9, substituting into the integral Eq. 64 and using the
recursion relation Eq. C.1 we have:

IKE,θ1,1 = R

[
(2l ′1 + 1)(2l ′1 − 1)

(2l ′3 + 1)

]1/2

×
π∫

0

2π∫
0

Y m1∗
l1

(θ1, φ1)Y
0
l ′1−1(θ1, φ1) sin(θ1)dθ1dφ1

×
π∫

0

2π∫
0

Y m2∗
l2

(θ2, φ2)Y
m′

2
l ′2
(θ2, φ2) sin(θ2)dθ2dφ2

×
⎧⎨
⎩
[
(l ′3 + m′

3)(l
′
3 − m′

3)

(2l ′3 − 1)

]1/2

×
π∫

0

2π∫
0

Y m3∗
l3

(θ3, φ3)Y
m′

3
l ′3−1(θ3, φ3) sin(θ3)dθ3dφ3

+
[
(l ′3 + m′

3 + 1)(l ′3 − m′
3 + 1)

(2l ′3 + 3)

]1/2

×
π∫

0

2π∫
0

Y m3∗
l3

(θ3, φ3)Y
m′

3
l ′3+1(θ3, φ3) sin(θ3)dθ3dφ3

⎫⎬
⎭ ,

m′
1 = 0, l ′1 = 1, 2 (67)

R denote the corresponding radial part. Now performing the rotations and expressing
the integral in terms of radial three-electron integrals, we obtain the final expression
of IKE,θ1,1:

IKE,θ1,1 = (−1)M2δ(M1 + M2 + M3, 0)

[
(2l ′1 + 1)(2l ′1 − 1)

(2l ′3 + 1)

]1/2

×
l ′1−1+l1∑

L1=|l ′1−1−l1|

l ′2+l2∑
L2=|l ′2−l2|

(2L1 + 1)(2L2 + 1)1/2

×C L1(l ′1 − 1,m′
1; l1,m1)C

L2(l ′2,m′
2; l2,m2)

×
⎧⎨
⎩
[
(l ′3 − m′

3)(l
′
3 + m′

3)

(2l ′3 − 1)

]1/2 l ′3−1+l3∑
L3=|l ′3−1−l3|

(2L3 + 1)1/2

×C L1(L2,−M2; L3,M3)C
L3(l ′3 − 1,m′

3; l3,m3)
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×J (N1 − 1, N2, N3 + 1;ω1, ω2, ω3; 1,−1; L2, L3)

+
[
(l ′3 − m′

3 + 1)(l ′3 + m′
3 + 1)

(2l ′3 + 3)

]1/2 l ′3+1+l3∑
L ′

3=|l ′3+1−l3|
(2L ′

3 + 1)1/2

×C L1(L2,−M2; L ′
3,M3)C

L ′
3(l ′3 + 1,m′

3; l3,m3)

× J (N1 − 1, N2, N3 + 1;ω1, ω2, ω3; 1,−1; L2, L ′
3)

⎫⎬
⎭ .

m′
1 = 0, l ′1 = 1, 2 (68)

We have obtained a linear combination of radial three-electron integrals multiplied
by some factors. In the practice many terms vanish due to the Condon and Shortley
coefficients.

Combining Eq. C.1 and Eq. C.9 for the case l ′1 = 1, 2 and substituting into Eq. 65
we get:

IKE,θ1,2 = R
1

2

π∫
0

2π∫
0

Y m2∗
l2

(θ2, φ2)Y
m′

2
l ′2
(θ2, φ2) sin(θ2)dθ2dφ2

×
π∫

0

2π∫
0

Y m3∗
l3

(θ3, φ3)Y
m′

3
l ′3
(θ3, φ3) sin(θ3)dθ3dφ3

×
⎧⎨
⎩(l ′1 − 1)

[
(2l ′1 + 1)

(2l ′1 − 3)

]1/2

×
π∫

0

2π∫
0

Y m1∗
l1

(θ1, φ1)Y
0
l ′1−2(θ1, φ1) sin(θ1)dθ1dφ1

+ l ′1

π∫
0

2π∫
0

Y m1∗
l1

(θ1, φ1)Y
0
l ′1
(θ1, φ1) sin(θ1)dθ1dφ1

⎫⎬
⎭ ,

m′
1 = 0, l ′1 = 1, 2 (69)

which after rotation expressed in terms of radial three-electron integrals leads to:

IKE,θ1,2 = 1

2
(−1)M2δ(M1 + M2 + M3, 0)

×
l ′2+l2∑

L2=|l ′2−l2|

l ′3+l3∑
L3=|l ′3−l3|

(2L2 + 1)1/2(2L3 + 1)1/2

×C L2(l ′2,m′
2; l2,m2)C

L3(l ′3,m′
3; l3,m3)
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×
⎧⎨
⎩(l ′1 − 1)

[
(2l ′1 + 1)

(2l ′1 − 3)

]1/2 l ′1−2+l1∑
L1=|l ′1−2−l1|

(2L1 + 1)

×C L1(l ′1 − 2,m′
1; l1,m1)C

L1(L2,−M2; L3,M3)

+l ′1
l ′1+l1∑

L ′
1=|l ′1−l1|

(2L ′
1+1)1/2C L ′

1(l ′1,m′
1; l1,m1)

× C L ′
1(L2,−M2; L3,M3)

⎫⎬
⎭

× [J (N1 − 2, N2, N3;ω1, ω2, ω3; 1, 1; L2, L3)

−J (N1, N2, N3;ω1, ω2, ω3; 1,−1; L2, L3)

− J (N1 − 2, N2, N3 + 2;ω1, ω2, ω3; 1,−1; L2, L3)] .

m′
1 = 0, l ′1 = 1, 2 (70)

The derivative of the spherical harmonic with m′
1 = 0 with respect to φ1 vanishes:

IKE,φ1,3 = 0 (71)

Now we treat the case m′
1 �= 0 for integrals Eqs. 64–66. Let us evaluate first the inte-

gral Eq. 65 using Eq. C.7, applying the cot θ1 over the complex conjugate Y m1∗
l1

(θ1, θ1)

and using the complex conjugate of Eq. C.3 we get:

−1

2
cot θ1Y m1∗

l1
(θ1, φ1)

∂Y
m′

1
l ′1
(θ1, φ1)

∂θ1
= − 1

8m1

×
{
[(l1 + m1 + 1)(l1 − m1)(l

′
1 − m′

1 + 1)(l ′1 + m′
1)]1/2

×e2iφ1 Y m1+1∗
l1

(θ1, φ1)Y
m′

1−1
l ′1

(θ1, φ1)

−[(l1 + m1 + 1)(l1−m1)(l
′
1+m′

1 + 1)(l ′1−m′
1)]1/2Y m1+1∗

l1
(θ1, φ1)Y

m′
1+1

l ′1
(θ1, φ1)

+[(l1−m1 + 1)(l1 + m1)(l
′
1−m′

1+1)(l ′1 + m′
1)]1/2Y m1−1∗

l1
(θ1, φ1)Y

m′
1−1

l ′1
(θ1, φ1)

−[(l1 − m1 + 1)(l1 + m1)(l
′
1 + m′

1 + 1)(l ′1 − m′
1)]1/2

×e−2iφ1 Y m1−1∗
l1

(θ1, φ1)Y
m′

1+1
l ′1

(θ1, φ1)
}
. m1 �= 0 (72)

Expanding the spherical harmonics and using the integrals obtained at the end of
Appendix C, a expression can be obtained without restrictions on l1, l ′1:

IKE,θ1,2 = (−1)M2

8m1
δ(M1+M2+M3, 0)

l ′1+l1∑
L1=|l ′1−l1|

l ′2+l2∑
L2=|l ′2−l2|

l ′3+l3∑
L3=|l ′3−l3|

(2L + 1)

× [(2L2 + 1)(2L3 + 1)]1/2 C L2(l ′2,m′
2; l2,m2)C

L3(l ′3,m′
3; l3,m3)
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×C L1(L2,−M2; L3,M3)

×
{

− δ(M1, 1) [(l1 + m1 + 1)(l1 − m1)(l
′
1 − m′

1 + 1)(l ′1 + m′
1)]1/2

×C L1(l ′1,m′
1 − 1; l1,m1 + 1)+ [(l1 + m1 + 1)(l1 − m1)(l

′
1+m′

1+1)

×(l ′1 − m′
1)]1/2C L1(l ′1,m′

1 + 1; l1,m1 + 1)
−[(l1−m1+1)(l1+m1)(l

′
1−m′

1+1)(l ′1+m′
1)]1/2C L1(l ′1,m′

1−1; l1,m1−1)

+δ(M1,−1)[(l1 − m1 + 1)(l1 + m1)(l
′
1 + m′

1 + 1)(l ′1 − m′
1)]1/2

×C L1(l ′1,m′
1+1; l1,m1−1)

}
[J (N1−2, N2, N3;ω1, ω2, ω3; 1, 1; L2, L3)

−J (N1, N2, N3;ω1, ω2, ω3; 1,−1; L2, L3)

−J (N1 − 2, N2, N3 + 2;ω1, ω2, ω3; 1,−1; L2, L3)] , m1 �= 0. (73)

In order to avoid large expressions in the evaluation of IKE,θ1,1 and IKE,φ1,3 for m1 �= 0,
we should distinguish between m1 > 0, and m1 < 0. Afterwards, the expressions can
be combined. The expressions given here, although they look complicated, they vanish
except for one, or several terms.

We evaluate Eq. 64 making the derivative of the spherical harmonic Eq. C.7 and
applying the complex conjugate of relation Eq. C.13 on the left hand side for m1 > 0,
and Eq. C.14 for m1 < 0, respectively, and using also Eq. C.1 we get:

IKE,θ1,1 = −R
1

2

[
(2l1 + 1)(2l1 − 1)

(l1 + |m1|)(l1 + |m1| − 1)(2l ′3 + 1)

]1/2 π∫
0

2π∫
0

Y m2∗
l2

(θ2, φ2)

×Y
m′

2
l ′2
(θ2, φ2) sin(θ2)dθ2dφ2

{[
(l ′3 − m′

3)(l
′
3 + m′

3)

(2l ′3 − 1)

]1/2

×
π∫

0

2π∫
0

Y m3∗
l3

(θ3, φ3)Y
m′

3
l ′3−1(θ3, φ3) sin(θ3)dθ3dφ3

×
⎛
⎝[(l ′1 − m′

1 + 1)(l ′1 + m′
1)]1/2

π∫
0

2π∫
0

F(l1,m1, θ1, φ1)

×Y
m′

1−1
l ′1

(θ1, φ1) sin(θ1)dθ1dφ1 − [(l ′1 + m′
1 + 1)(l ′1 − m′

1)]1/2

×
π∫

0

2π∫
0

F ′(l1,m1, θ1, φ1)Y
m′

1+1
l ′1

(θ1, φ1) sin(θ1)dθ1dφ1

⎞
⎠

+
[
(l ′3 − m′

3 + 1)(l ′3 + m′
3 + 1)

(2l ′3 + 3)

]1/2 π∫
0

2π∫
0

Y m3∗
l3

(θ3, φ3)
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×Y
m′

3
l ′3+1(θ3, φ3) sin(θ3)dθ3dφ3

(
[(l ′1 − m′

1 + 1)(l ′1 + m′
1)]1/2

×
π∫

0

2π∫
0

F(l1,m1, θ1, φ1)Y
m′

1−1
l ′1

(θ1, φ1) sin(θ1)dθ1dφ1

−[(l ′1 + m′
1 + 1)(l ′1 − m′

1)]1/2

π∫
0

2π∫
0

F ′(l1,m1, θ1, φ1)

×Y
m′

1+1
l ′1

(θ1, φ1) sin(θ1)dθ1dφ1

)}
(74)

with:

F(l1,m1, θ1, φ1) = Y m1−1∗
l1−1 (θ1, φ1),

F ′(l1,m1, θ1, φ1) = e−2iφ1 Y m1−1∗
l1−1 (θ1, φ1), m1 > 0

F(l1,m1, θ1, φ1) = e2iφ1 Y m1+1∗
l1−1 (θ1, φ1),

F ′(l1,m1, θ1, φ1) = Y m1+1∗
l1−1 (θ1, φ1), m1 < 0. (75)

After rotation and angular integration we obtain:

IKE,θ1,1 = −1

2
(−1)M2δ(M1+M2+M3, 0)

[
(2l1+1)(2l1−1)

(l1+|m1|)(l1 + |m1| − 1)(2l ′3 + 1)

]1/2

×
l ′1−1+l1∑

L1=|l ′1−1−l1|

l ′2+l2∑
L2=|l ′2−l2|

(2L1 + 1)(2L2 + 1)1/2C L2(l ′2,m′
2; l2,m2)

×
⎧⎨
⎩
[
(l ′3 − m′

3)(l
′
3 + m′

3)

(2l ′3 − 1)

]1/2 l ′3−1+l3∑
L3=|l ′3−1−l3|

(2L3 + 1)1/2

×C L3(l ′3 − 1,m′
3; l3,m3)C

L1(L2,−M2; L3,M3) f (l1,m1, l
′
1,m′

1)

×J (N1 − 1, N2, N3 + 1;ω1, ω2, ω3; 1,−1; L2, L3)

+
[
(l ′3 − m′

3 + 1)(l ′3 + m′
3 + 1)

(2l ′3 + 3)

]1/2 l ′3+1+l3∑
L ′

3=|l ′3+1−l3|
(2L ′

3 + 1)1/2

×C L ′
3(l ′3 + 1,m′

3; l3,m3)C
L1(L2,−M2; L ′

3,M3) f ′(l1,m1, l
′
1,m′

1)

× J (N1 − 1, N2, N3 + 1;ω1, ω2, ω3; 1,−1; L2, L ′
3)

⎫⎬
⎭ , (76)
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where the functions f and f ′ are for the case m1 > 0:

f (l1,m1, l
′
1,m′

1) = [(l ′1 − m′
1 + 1)(l ′1 + m′

1)
]1/2

C L1(l ′1,m′
1 − 1; l1 − 1,m1 − 1)

+δ(M1,−1)
[
(l ′1 + m′

1 + 1)(l ′1 − m′
1)
]1/2

C L1(l ′1,m′
1 + 1; l1 − 1,m1 − 1),

f ′(l1,m1, l
′
1,m′

1) = [(l ′1 − m′
1 + 1)(l ′1 + m′

1)
]1/2

C L1(l ′1,m′
1 − 1; l1 − 1,m1 − 1)

+δ(M1,−1)
[
(l ′1 + m′

1 + 1)(l ′1 − m′
1)
]1/2

C L1(l ′1,m′
1 + 1; l1 − 1,m1 − 1), (77)

and for the case m1 < 0:

f (l1,m1, l
′
1,m′

1) = δ(M1, 1)
[
(l ′1−m′

1+1)(l ′1+m′
1)
]1/2

C L1(l ′1,m′
1−1; l1−1,m1+1)

+ [(l ′1 + m′
1 + 1)(l ′1 − m′

1)
]

C L1(l ′1,m′
1 + 1; l1 − 1,m1 + 1),

f ′(l1,m1, l
′
1,m′

1) = δ(M1, 1)
[
(l ′1−m′

1+1)(l ′1+m′
1)
]1/2

C L1(l ′1,m′
1−1; l1−1,m1+1)

+ [(l ′1 + m′
1 + 1)(l ′1−m′

1)
]1/2

C L1(l ′1,m′
1 + 1; l1 − 1,m1 + 1).

(78)

Now we evaluate Eq. 64 for m′
1 �= 0 using firstly Eq. C.8. sin(φ1 − φ3) can be

expanded and written as exponential:

sin(φ1 − φ3) = 1

2i

(
eiφ1 e−iφ3 − e−iφ1 eiφ3

)
, (79)

IKE,φ1,3 = R(−1)M2+ρ m′
1

2

[
(2l1 − 1)(2l1 + 1)

(l1 + |m1|)(l1 + |m1| − 1)

]1/2

×
π∫

0

2π∫
0

F(θ1,φ1)Y
m′

1
l ′1
(θ1,φ1) sin(θ1)dθ1dφ1

×
π∫

0

2π∫
0

Y m2∗
l2

(θ2,φ2)Y
l ′2
l ′2
(θ2,φ2) sin(θ2)dθ2dφ2

×
⎧⎨
⎩
⎛
⎝
[
(l ′3 − m′

3 + 1)(l ′3 − m′
3 + 2)

(2l ′3 + 1)(2l ′3 + 3)

]1/2 π∫
0

2π∫
0

Y m3∗
l3

(θ3,φ3)

×Y
m′

3−1
l ′3+1 (θ3,φ3) sin(θ3)dθ3dφ3 −

[
(l3 − m3 + 1)(l3 − m3 + 2)

(2l3 + 1)(2l3 + 3)

]1/2

×
π∫

0

2π∫
0

Y m3∗
l3

(θ3,φ3)Y
m′

3−1
l ′3+1 (θ3,φ3) sin(θ3)dθ3dφ3

⎞
⎠
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−
⎛
⎝
[
(l3 + m3 + 1)(l3 + m3)

(2l3 + 1)(2l3 − 1)

]1/2 π∫
0

2π∫
0

Y m3−1∗
l3+1 (θ3,φ3)

×Y
m′

3
l ′3
(θ3,φ3) sin(θ3)dθ3dφ3 −

[
(l ′3 + m′

3 + 1)(l ′3 + m′
3)

(2l ′3 + 1)(2l ′3 − 1)

]1/2

×
π∫

0

2π∫
0

Y m3−1∗
l3−1 (θ3,φ3)Y

m′
3

l ′3
(θ3,φ3) sin(θ3)dθ3dφ3

⎞
⎠
⎫⎬
⎭ , (80)

with

F(θ1,φ1) = Y m1−1∗
l1−1 (θ1,φ1), ρ = 0, m1 > 0

F(θ1,φ1) = Y m1+1∗
l1−1 (θ1,φ1), ρ = 1, m1 < 0. (81)

A general expression for Eq. 80 can be obtained using the recursion relation Eq. C.5
for Y m1

l1
(θ1, φ1) and Eq. C.2 for Y m3

l3
(θ3, φ3), or the corresponding complex conjugate

relations.
Similarly the evaluation of IKE,φ1,3 for m′

1 �= 0, with the two cases m1 > 0 and
m1 < 0 leads to:

IKE,φ1,3 = (−1)M2+ρ m′
1

2

[
(2l1 − 1)(2l1 + 1)

(l1 + |m1|)(l1 + |m1| − 1)

]1/2

×
l ′1−1+l1∑

L1=|l ′1−1−l1|

l ′2+l2∑
L2=|l ′2−l2|

(2L1 + 1)(2L2 + 1)1/2C L2(l ′2,m′
2; l2,m2)

×
⎧⎨
⎩

l ′3−1+l3∑
L3=|l ′3−1−l3|

(2L3 + 1)1/2 C L3(l ′3 + 1,m′
3 − 1; l3,m3)

×
([
(l ′3 − m′

3 + 1)(l ′3 − m′
3 + 2)

(2l ′3 + 1)(2l ′3 + 3)

]1/2

f (L1,M1, L2,M2, L3,M3)

−
[
(l3 − m3 + 1)(l3 − m3 + 2)

(2l3 + 1)(2l3 + 3)

]1/2

f ′(L1,M1, L2,M2, L3,M3)

)

×J (N1 − 1, N2, N3 + 1;ω1, ω2, ω3; 1,−1; L2, L3)

+
l ′3+1+l3∑

L ′
3=|l ′3+1−l3|

(2L ′
3 + 1)1/2C L ′

3(l ′3,m′
3; l3 − 1,m3 − 1)
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×
([
(l3 + m3 + 1)(l3 + m3)

(2l3 + 1)(2l3 − 1)

]1/2

f ′(L1,M1, L2,M2, L ′
3,M3)

−
[
(l ′3 + m′

3 + 1)(l ′3 + m′
3)

(2l ′3 + 1)(2l ′3 − 1)

]1/2

f (L1,M1, L2,M2, L ′
3,M3)

)

× J (N1 − 1, N2, N3 + 1;ω1, ω2, ω3; 1,−1; L2, L ′
3)

⎫⎬
⎭ , (82)

where the functions f , f ′ for the case m′
1 > 0 with ρ = 0 are:

f (L1,M1, L2,M2, L3,M3) = δ(M1 + M2 + M3, 0)

×C L1(l ′1,m′
1; l1−1,m1−1)C L1(L2,−M2; L3,M3−1),

f ′(L1,M1, L2,M2, L3,M3) = δ(M1, 0)δ(M1 + M2 + M3, 0)

×C L1(l ′1,m′
1; l1 − 1,m1 − 1)C L1(L3,M3 + 1; L2,−M2), (83)

and for m′
1 < 0 with ρ = 1 are:

f (L1,M1, L2,M2, L3,M3) = δ(M1 + M2 + M3, 2)

×C L1(l ′1,m′
1; l1 − 1,m1 + 1)C L1(L2,−M2; L3,M3 − 1),

f ′(L1,M1, L2,M2, L3,M3) = δ(M1, 1)δ(M1 + M2 + M3, 0)

×C L1(l ′1,m′
1; l1 − 1,m1 + 1)C L1(L3,M3 + 1; L2,−M2). (84)

Due to the Kronecker δ, Ck and cancelation of products of Ck , IKE,φ1,3 is zero for
most of the cases. This fact cannot be demonstrated a priori, therefore the equations
are given.

The total kinetic energy is the sum of the radial, angular momentum and angular
contributions:

IKE1 = IKE,R1 + IKE,θ1,L + IKE,θ1,1 + IKE,θ1,2 + IKE,φ1,3 (85)

Results of all these integrals are given in the partitioning of the kinetic energy in
Table 5. The recursion relations and derivatives of spherical harmonics are given in
the Appendix C. In Table 6 values of the kinetic energy are given for several cases of
orbitals involved with more than 30 figures. Using our computer program, we have
been able to reproduce all the recent kinetic energy values given by Sims and Hag-
strom [33] with full accuracy. Further, thousands of kinetic energy integrals have been
computed and compared with the Sims and Hagstrom’s program code (J. S. Sims, per-
sonal communication) showing full agreement. All the formulas have been checked
with the Fortran 90 computer program and Maple.

123



J Math Chem (2009) 46:24–64 55

Table 5 Partitioning of some kinetic energy three-electron integrals. α= 1.40 for orbitals with ′′, otherwise
α= 2.86. Missing contributions are zero

Charge distribution ω1 ω2 ω3 Value

(1s1s, 1s2s′′, 2s1s′′)
IKE,R1 5.72 4.26 4.26 0.13126 72235 19561 47025 67125 92522 × 10−4

IKE1 5.72 4.26 4.26 0.13126 72235 19561 47025 67125 92522 × 10−4

(2p02p0, 1s1s, 2s′′2s′′)
IKE,R1 5.72 5.72 2.80 0.11173 73454 25881 89473 77487 07305 × 10−4

IKE,θ1,L 5.72 5.72 2.80 0.23121 46000 74224 80076 39627 66290 × 10−4

IKE,θ1,1 5.72 5.72 2.80 0.11361 37233 59884 44695 67616 73635 × 10−5

IKE,θ1,2 5.72 5.72 2.80 −0.11361 37233 59884 44695 67616 73635 × 10−5

IKE1 5.72 5.72 2.80 0.34295 19455 00106 69550 17114 73595 × 10−4

(2p02p0, 2p02p0, 2p02p0)

IKE,R1 5.72 5.72 5.72 0.27412 63595 41602 41619 16234 12903 × 10−6

IKE,θ1,L 5.72 5.72 5.72 −0.13319 27053 15727 61426 77155 24170 × 10−6

IKE,θ1,1 5.72 5.72 5.72 0.30768 29932 79821 64018 64233 64324 × 10−7

IKE,θ1,2 5.72 5.72 5.72 0.89066 97099 50921 45397 24746 94767 × 10−7

IKE1 5.72 5.72 5.72 0.26076 89245 48949 11133 97976 94642 × 10−6

(3d13d1, 2p12p′′
1 , 3d13d ′′

1 )

IKE,R1 5.72 4.26 4.26 0.37715 96048 76198 86984 97258 71928 × 10−5

IKE,θ1,L 5.72 4.26 4.26 0.15731 01714 18448 93148 08711 44597 × 10−4

IKE,θ1,1 5.72 4.26 4.26 −0.62869 65273 66595 59716 58684 73496 × 10−6

IKE,θ1,2 5.72 4.26 4.26 0.34501 95075 21632 95846 87756 98358 × 10−6

IKE1 5.72 4.26 4.26 0.19218 93617 07619 19207 88728 04038 × 10−4

Table 6 Kinetic energy three-electron integrals of electron 1. The charge distributions are constructed with
the exponents α= 1.40 for orbitals with ′′, otherwise α= 2.86

Charge distribution ω1 ω2 ω3 IKE

(1s1s, 1s1s′′, 1s1s′′) 5.72 4.26 4.26 0.15659 17112 60607 62842 78921 37447 × 10−4

(1s1s, 1s2s′′, 1s2s′′) 5.72 4.26 4.26 0.13126 72235 19561 47025 67125 92522 × 10−4

(2p02p0, 1s1s, 2s′′2s′′) 5.72 5.72 2.80 0.34295 19455 00106 69550 17114 73595 × 10−4

(1s1s, 1s2p′′
0 , 1s2p′′

0 ) 5.72 4.26 4.26 0.45769 77948 50777 26085 44884 85868 × 10−6

(1s2p0, 1s1s, 1s2p′′
0 ) 5.72 5.72 4.26 −0.12906 22778 17056 65339 27233 71594 × 10−6

(1s3d ′′
0 , 1s1s, 1s3d ′′

0 ) 4.26 5.72 4.26 0.79465 21564 41320 36387 60727 96090 × 10−7

(2p02p′′
0 , 1s1s, 2p02p′′

0 ) 4.26 5.72 4.26 0.81495 98738 32346 11143 47248 05787 × 10−5

(1s1s, 2p02p′′
0 , 2p02p′′

0 ) 5.72 4.26 4.26 0.17800 68839 29555 22718 57902 99996 × 10−4

(2p02p0, 2p02p0, 2p02p0) 5.72 5.72 5.72 0.26076 89245 48949 11133 97976 94642 × 10−6

(3d03d ′′
0 , 1s1s, 3d03d ′′

0 ) 4.26 5.72 4.26 0.46916 53824 00611 40864 14255 65967 × 10−4

(3d03d ′′
0 , 3d03d0, 3d03d ′′

0 ) 4.26 5.72 4.26 0.19195 81649 30384 83368 39585 45964 × 10−4

(2p12p′′
1 , 1s1s, 1s1s) 4.26 5.72 5.72 0.33657 95725 13801 82596 65603 91000 × 10−5

(3d23d2, 1s1s′′, 2s2s′′) 5.72 4.26 4.26 0.11417 77154 84591 52206 92069 39983 × 10−4

(2p12p′′
1 , 1s1s, 2p12p′′

1 ) 4.26 5.72 4.26 0.82384 74233 55412 57794 19375 09453 × 10−5

(2p12p1, 2p12p′′
1 , 2p12p′′

1 ) 5.72 4.26 4.26 0.78369 38975 20372 96896 51687 01558 × 10−5

(3d13d1, 2p12p′′
1 , 3d13d ′′

1 ) 5.72 4.26 4.26 0.19218 93617 07619 19207 88728 04038 × 10−4

(3d23d2, 3d13d ′′
1 , 3d23d ′′

2 ) 5.72 4.26 4.26 0.40399 59434 35959 51311 79010 05972 × 10−4

(2p02p0, 2p02p′′−1, 2p02p′′
1 ) 5.72 4.26 4.26 −0.34528 36595 44116 76923 18333 94309 × 10−8

(3d03d0, 3p03p′′−1, 3d03d ′′
1 ) 5.72 4.26 4.26 −0.58364 96884 44425 76337 00583 35223 × 10−8

(2p−12p′′−1, 1s1s, 1s1s) 4.26 5.72 5.72 0.33657 95725 13801 82596 65603 91000 × 10−5

(3d−23d−2, 1s1s, 3d−23d ′′−2) 5.72 5.72 4.26 0.87337 99889 07121 70685 75959 02696 × 10−5
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4 Conclusions

A new method is presented which combines the advantages of the direct integration
of the interelectronic coordinate, with the new developments in the calculation of
non-trivial auxiliary integrals employed in the classical method. The method has the
advantage that only auxiliary one- and two-electron integrals have to be computed
and stored in memory during the calculation of matrix elements. The number of these
integrals is about n4

orb × n2
pow, reduced compared with the number of three-electron

integrals, and dramatically reduced compared with the four-electron ones.
Also according to the development of the computers it seems more reasonable to

perform direct calculations (always faster processors) than larger core memory. There-
fore this method of integration would allow to extend the applicability of the Hy-CI
method to atoms with higher number of electrons as the first row of elements.

This method can be used to evaluate all kinds of three-electron integrals (the triangle
integral was evaluated by Szász) and two-electron integrals containing any angular
functions (s-, p-, d-, f -, g-, . . . orbitals) in terms of two-electron integrals. Basic
two-electron integrals with a negative power are calculated in terms of auxiliary two-
electron integrals instead of using logarithms. This fact means a winning in speed,
and in accuracy because a loss of several digits could occur due to the substractions
appearing together with the logarithmic expressions. This method achieves the high-
est accuracy at quadruple precision (by our computer about 30 decimal digits). For
these reasons, the method is an extension of Perkins’ method of integration to angular
orbitals, taking care of accuracy aspects important in modern calculations.

As the method is conceptually completely different to the classical one, it can be
useful for comparison purposes. Speed and performance of the computer program by
this method was not studied in this paper, although these issues seem very promissing.
This will be discussed with actual calculations.

The kinetic energy is calculated using the Hamiltonian in Hylleraas coordinates,
for first time to our knowledge. Therefore the angular part of the formula of the Ham-
iltonian has been with these calculations proved. The kinetic and potential energy
integrals are also solved finally as linear combinations of auxiliary two-electron inte-
grals. While the radial part is straightforward, to evaluate some contributions of the
angular part, the derivatives of the spherical harmonics are done and recursion rela-
tions among spherical harmonics are used. A new derivative of spherical harmonics
containing the inverse of the sinus is given, and so as some compact derivatives for
the first quantum numbers, which make the expressions shorter. The lengthy resulting
expressions are nevertheless computationally very fast, as they consist on factors and
coefficients, which most of them vanish, and only one or two radial three-electron
integrals remain, which are calculated in terms of basic two-electron ones.

Highly accurate results of the integrals are given in the tables of the paper. Thousands
of all these integrals have been calculated with the program described here and the
computer program of Sims and Hagstrom showing fully agreement to high accuracy.
In a following paper the four-electron integrals will be evaluated using this method.

Acknowledgements The author is deeply indebted to James Sims for advising, providing highly accurate
results of three-electron and kinetic energy integrals to test the method and for the comparison of these
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integrals with the ones obtained by his program code. Also the high precision Vkl and Condon and Shortley
coefficients programs of James Sims and Stanley Hagstrom are greatly acknowledged. Philip Hoggan is
thanked for reading the manuscript and for his helpful comments to improve it. Finally, the author is very
grateful to Peter Otto for supporting this project.

Appendix A: The rotation of spherical harmonics

In Fig. 1 the z-axis has been rotated to coincide momentally with r1. This is a rotation
of the Euler angles α = φ1, β = θ1 and γ = 0. One can see in Fig. 1 the transfor-
mation of the polar angles: θ2 → θ12, and φ2 → φ12 . The index 2 stands for any
electron different of 1. The angular function Y m2

l2
(θ2, φ2) has been transformed. There

is a coupling with the function of θ1 and φ1 because the linked electron 1.We propose
a transformation of the type:

Y m2
l2
(θ2, φ2) =

(
4π

2l + 1

)1/2 l2∑
m′

2=−l2

Y m2
l2
(θ1, φ1)Y

m′
2

l2
(θ12, φ12). (A.1)

When we integrate over φ12 in the integrals we will get m′
2 = 0, and the sum will be

effectively reduced to:

Y m2
l2
(θ2, φ2) −→ Y m2

l2
(θ1, φ1)Pl2(cos θ12). (A.2)

This relation has been obtained first empirically. We can demonstrate the validity of
Eq. A.1. The rotation of a spherical harmonic is related to the rotation matrices [57,
Eq. 204], [58, Eq. 4.1.(5)]. For our case:

Y m2
l2
(θ2, φ2) =

l2∑
m′

2=−l2

D(l2)∗m2,m′
2
(α, β, γ )Y m2′

l2
(θ12, φ12). (A.3)

This equation was used by Drake [45, Eq. 6]. A particular case of Eq. A.3 is when
the rotated z-axis coincides with r1, the coordinates of electron 1 are then θ1 = 0
and therefore cos θ = 1. For θ = 0, all the Legendre functions have the value 1,
Pm′

l (cos θ) = Pm′
l (1) = 1, that is the same that P0

l (1), then m′ = 0. We can rewrite
the definition Eq. 4 of a spherical harmonic:

Y
m′

2
l2
(0, φ1) =

(
2l1 + 1

4π

)1/2 [ (l2 − m′
2)!

(l2 + m′
2)!
]1/2

eim′
2δm′

2,0
, (A.4)

substituting into Eq. A.3:

Y m2
l2
(θ2, φ2) =

l2∑
m′

2=−l2

D(l2)∗m2,m′
2
(α, β, γ )

(
2l1+1

4π

)1/2 [ (l2−m′
2)!

(l2+m′
2)!
]1/2

eim′
2δm′

2,0
,

(A.5)
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simplifying:

Y m2
l2
(θ2, φ2) = D(l2)∗m2,m′

2
(α, β, γ )

(
2l1 + 1

4π

)1/2

δm′
2,0
, (A.6)

turning around:

D(l2)∗m2,m′
2
(α, β, γ ) =

(
4π

2l2 + 1

)1/2

Y m2
l2
(θ1, φ1)δm′

2,0
. (A.7)

This equation shows the connection between the rotation operator and the spherical
harmonics. Finally, substituting Eq. A.7 into Eq. A.3:

Y m2
l2
(θ2, φ2) =

(
4π

2l + 1

)1/2 l2∑
m′

2=−l2

Y m2
l2
(θ1, φ1)Y

m′
2

l2
(θ12,φ12), (A.8)

this equation has the form of an addition theorem. We have checked the transfor-
mation Eq. A.1 in the angular integration after rotation of the two-electron integrals
and obtained the same final expression than Calais and Lowdin [43], and Drake [45],
respectively.

Appendix B: Condon and Shortley coefficients

We have defined the one-electron radial charge distributions by expanding the products
of spherical harmonics from Eq. 7, where the Condon and Shortley coefficients are
given by Eq. 8. The expression Eq. 8 is equivalent to Condon and Shortley’s original
definition [50, Eq. 6, p. 175]. These coefficients are explicitly tabulated [50, pp. 178,
179]. The angular momentum quantum numbers Li satisfy the triangular condition
|li − l ′i | ≤ L ≤ li + l ′i and the restriction Li ≥ |Mi |. Mi is defined as Mi = m′

i − mi .
In Sect. 2, we have defined Li and stated that it depends also on mi . More precisely,
Li takes values in steps of 2, Li = lmin

i , lmin
i + 2, . . . lmax

i − 2, lmax
i , where:

lmax
i = li + l ′i
lmin
i = max(|li − l ′i |, |mi |) if max(|li − l ′i |, |mi |)+ lmax

i even, (B.1)

lmin
i = max(|li − l ′i |, |mi |)+ 1 if max(|li − l ′i |, |mi |)+ lmax

i odd.

These relations are the selection rules [59]. If these are not satisfied, the coefficients
are zero, which greatly recudes the computational effort.

The Condon and Shortley coefficients are closely related to the Gaunt function [62,
Eq. 9, p. 194] and to the Wigner 3 jm-symbols [61]. In fact in the program we have
used, the Condon and Shortley coefficients are calculated with the Gaunt’s formula
[52, Eq. 11, p. 176].
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Gaunt coefficients [60] are the coefficients of the expanssion:

Y m∗
l (θ, φ)Y m′

l ′ (θ, φ) =
l+l ′∑

L=|l−l ′|

〈
l ′,m′|l,m|L ,M

〉
Y M

L (θ, φ), M = m′ − m

(B.2)

and they are the result of the evaluation of the three-fold spherical harmonics integral:

〈
l ′,m′|l,m|L ,M

〉 =
π∫

0

2π∫
0

Y m′∗
l ′ (θ, φ)Y m

l (θ, φ)Y
M
L (θ, φ) sin θdθdφ. (B.3)

The Gaunt coefficients can be calculated making use of the expression of the
3 jm-symbols [62]:

〈
l ′,m′|l,m|L ,M

〉 = (−1)m
′
[
(2l ′ + 1)(2l + 1)(2L + 1)

4π

]1/2

×
(

l ′ l L

0 0 0

)(
l ′ l L

m′ m − M

)
. (B.4)

For extremely large l quantum numbers, some difficuties appear due to the exact cal-
culation of factorials of very large numbers. In our case, the expansions over spherical
harmonic in atomic calculations do not need high values of l, and the use of the Gaunt
function with quadruple precision arithmetic is sufficient.

The Gaunt coefficients are related to the Condon and Shortley coefficients. Com-
paring Eqs. B.2 and B.5 we get:

C L(l ′,m′, l,m) =
(

4π

2L + 1

)1/2 〈
l ′,m′|l,m|L ,M

〉
(B.5)

in agreement with [59, Eq. 1.4]. Therefore, Gaunt coefficients and Condon and Short-
ley coefficients are equivalent up to a factor.

Alternativelly, the integration of the three-fold spherical harmonics integral could
have been carried out in terms of Clebs–Gordan coefficients, using Eq. [58, Eq. 5.9.4]:

π∫
0

2π∫
0

Y m′∗
l ′ (θ, φ)Y m

l (θ, φ)Y
M
L (θ, φ) sin θdθdφ =

[
(2l + 1)(2L + 1)

4π(2l ′ + 1)

]

×Cl ′0
l0L0Cl ′m′

lmL M (B.6)

We have used in this work the computer program in quadruple precision by Sims
and Hagstrom, for more information on the computational details, see Appendix A of
Ref. [33].
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Appendix C: Recursion and differential relations of spherical harmonics

The angular kinetic energy is the sum of the contributions given by the operator
Eq. 56, see [48, Eqs. 34, 35]. After performing the derivative with respect to the inter-
particle coordinate, we have to evaluate the integrals Eqs. 64–66. For this we have to
make the derivatives of the spherical harmonics with respect to the angles, and also to
express the products of the angular functions and spherical harmonics into spherical
harmonics using recursion relations. Some necessary recursion relations4 in terms of
spherical harmonics are [64, 5.7.]:

cos θY m
l (θ, φ) =

[
(l + m)(l − m)

(2l + 1)(2l − 1)

]1/2

Y m
l−1(θ, φ)

+
[
(l + m + 1)(l − m + 1)

(2l + 1)(2l + 3)

]1/2

Y m
l+1(θ, φ), (C.1)

sin θY m
l (θ, φ) =

[
(l − m + 1)(l − m + 2)

(2l + 3)(2l + 1)

]1/2

eiφY m−1
l+1 (θ, φ)

−
[
(l + m − 1)(l + m)

(2l + 1)(2l − 1)

]1/2

eiφY m−1
l−1 (θ, φ), (C.2)

− cot θY m
l (θ, φ) = 1

2m
[(l + m + 1)(l − m)]1/2e−iφY m+1

l (θ, φ)

+ 1

2m
[(l − m + 1)(l + m)]1/2eiφY m−1

l (θ, φ). (C.3)

We also need recursion relations with the factor 1
sin θ . From Ref. [63] we substract

Eq. 3 from Eq. 2, and the recursion relation is found be:

1

sin θ
Pm

l (cos θ) = 1

2m

[
(l−m+2)(l−m+1)Pm−1

l+1 (θ)+ Pm+1
l+1 (θ)

]
, m �= 0 (C.4)

which written in terms of spherical harmonics is:

Y m
l (θ, φ)

sin θ
= − 1

2m

[
(2l + 1)

(2l + 3)

]1/2 [
[(l − m + 2)(l − m + 1)]1/2eiφY m−1

l+1 (θ, φ)

+((l + m + 1)(l + m + 2))1/2e−iφY m+1
l+1 (θ, φ)

]
, m �= 0. (C.5)

4 In the following, the quantum number m in the relations can be positive or negative, only when it is
explicitly written |m| is the absolute value.
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The derivative of a spherical harmonic with respect to the angle θ expressed in
terms of spherical harmonics is [58, Eq. 5.8.2.(1)]:

∂Y m
l (θ, φ)

∂θ
= m cot θY m

l (θ, φ)+ [(l − m)(l + m + 1)]1/2e−iφY m+1
l (θ, φ), (C.6)

and inserting Eq. C.3 into Eq. C.6:

∂Y m
l (θ, φ)

∂θ
= 1

2
[(l + m + 1)(l − m)]1/2e−iφY m+1

l (θ, φ)

−1

2
[(l − m + 1)(l + m)]1/2eiφY m−1

l (θ, φ). (C.7)

The derivative of a spherical harmonic with respect to φ is simple:

∂Y m
l (θ, φ)

∂φ
= imY m

l (θ, φ). (C.8)

To evaluate the integrals Eqs. 64–66, using Eq. C.5 we have distinguished between
m = 0 and m �= 0, to avoid singularities. As the case m = 0 is not defined, some
relations have been investigated and the derivative is found to be:

− 1

sin(θ)

∂Y 0
l (θ, φ)

∂θ
=

l∑
i=1

[(2l + 1)(2l − i)]1/2Y 0
l−i (θ, φ) (C.9)

In order to evaluate Eq. 64 avoiding lengthly expressions, we look for shorter expres-
sions involving the inverse of sin(θ). For l ≤ 2 and some cases when l − m ≤ 1, the
following relations have been found:

1

sin(θ)
Y m

l (θ, φ) = −
[
(2l − 1)(2l + 1)

(l + m)(l + m − 1)

]1/2

Y m−1
l−1 (θ, φ)e

iφ, m > 0 (C.10)

1

sin(θ)
Y m

l (θ, φ) =
[

(2l − 1)(2l + 1)

(l + |m|)(l + |m|−1)

]1/2

Y m+1
l−1 (θ, φ)e

−iφ, m < 0 (C.11)

Finally there are some integrals among spherical harmonics containing e2iφ1 and
e−2iφ1 which deserve to be evaluated separately. Two examples are given:
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π∫
0

2π∫
0

Y M1−2
L1

(θ1, φ1)Y
M2
L2
(θ1, φ1)Y

M3
L3
(θ1, φ1)e

2iφ1 sin(θ1)dθ1dφ1

= (−1)M2δ(M1 + M2 + M3, 0)

π∫
0

2π∫
0

Y M1−2
L1

(θ1, φ1)Y
−M2∗
L2

(θ1, φ1)

×Y M3
L3
(θ1, φ1)e

2iφ1 sin(θ1)dθ1dφ1

= (−1)M2δ(M1 + M2 + M3, 0)
L2+L3∑

L=|L2−L3|

[
2L + 1

4π

]1/2

C L(L3,M3; L2,−M2)

×
π∫

0

2π∫
0

Y M1−2
L1

(θ1, φ1)Y
M
L (θ1, φ1)e

2iφ1 sin(θ1)dθ1dφ1

= 2π(−1)M2δ(M1+M2+M3, 0)
L2+L3∑

L=|L2−L3|

[
2L+1

4π

]1/2

C L(L3,M3; L2,−M2)

×
[

2L1 + 1

4π

]1/2 [
(L1 − M1 + 2)!
(L1 + M1 − 2)!

]1/2 [2L + 1

4π

]1/2 [
(L − M)!
(L + M)!

]1/2

×
π∫

0

P M1−2
L1

P M
L sin(θ1)dθ1

= (−1)M2δ(M1, 1)δ(M1+M2+M3, 0)

[
(2L1 + 1)

4π

]1/2

C L1(L3,M3; L2,−M2),

(C.12)

with M = M2 + M3 and

π∫
0

P M1−2
L1

P M
L sin(θ1)dθ1 = δ(L , L1)δ(M1 − 2,M)

2(L + M)!
(2L + 1)(L − M)! . (C.13)

Similarly

π∫
0

2π∫
0

Y M1+2
L1

(θ1, φ1)Y
M2
L2
(θ1, φ1)Y

M3
L3
(θ1, φ1)e

−2iφ1 sin(θ1)dθ1dφ1

=(−1)M2δ(M1,−1)δ(M1+M2+M3, 0)

[
2L1+1

4π

]1/2

C L1(L3,M3; L2,−M2).

(C.14)

123



J Math Chem (2009) 46:24–64 63

References

1. Recent Advances in Computational Chemistry. Molecular integrals over Slater orbitals, ed. by
T. Özdogan, M.B. Ruiz (Transworld Research Network, Kerala, India, in press, 2008)

2. T. Kato, Commun. Pure Appl. Math. 10, 151 (1951)
3. E.A. Hylleraas, Z. Phys. 54, 347 (1929)
4. C. Schwartz, Int. J. Mod. Phys. 15, 877 (2006)
5. H. Nakashima, H. Nakatsuji, J. Chem. Phys. 128, 154107 (2008)
6. J.S. Sims, S.A. Hagstrom, Int. J. Quantum Chem. 90, 1600 (2002)
7. M. Puchalski, K. Pachucki, Phys. Rev. A 73, 022503 (2006)
8. G. Büsse, H. Kleindienst, A. Lüchow, Int. J. Quantum Chem. 66, 241 (1998)
9. J.S. Sims, S.A. Hagstrom, J. Chem. Phys. 124, 094101 (2006)

10. B.-L. Zhou, J.-M. Zhu, Z.-C. Yan, Phys. Rev. A 73, 064503 (2006)
11. D.C. Clary, N.C. Handy, Phys. Rev. A 14, 1607 (1976)
12. D.C. Clary, N.C. Handy, Chem. Phys. Lett. 51, 483 (1977)
13. S. Ragot, M.B. Ruiz, submitted
14. A. Heßelmann, G. Jansen, Phys. Chem. Chem. Phys. 5, 5010 (2003)
15. M.B. Ruiz, to be submitted
16. H. Kleindienst, G. Büsse, A. Lüchow, Int. J. Quantum Chem. 53, 575 (1995)
17. F.W. King, J. Chem. Phys. 99, 3622 (1993)
18. J.S. Sims, S.A. Hagstrom, J. Chem. Phys. 55, 4699 (1971)
19. J.S. Sims, S. Hagstrom, Phys. Rev. A 4, 908 (1971)
20. M.B. Ruiz, to be submitted
21. S. Larsson, Phys. Rev. 169, 49 (1968)
22. H.M. James, A.S. Coolidge, Phys. Rev. 49, 688 (1936)
23. Y. Öhrn, J. Nordling, J. Chem. Phys. 39, 1864 (1963)
24. E.A. Burke, Phys. Rev. 130, 1871 (1963)
25. J. Hinze, K.S. Pitzer, J. Chem. Phys. 41, 3484 (1964)
26. L. Szasz, J. Byrne, Phys. Rev. 158, 34 (1967)
27. J.F. Perkins, J. Chem. Phys. 48, 1985 (1968)
28. Y.K. Ho, B.A.P. Page, J. Comp. Phys. 17, 122 (1975)
29. Z.-C. Yan, G.W.F. Drake, J. Phys. B: At. Mol. Opt. Phys. 30, 4723 (1997)
30. P.J. Pelzl, F.W. King, Phys. Rev. E 57, 7268 (1998)
31. A.M. Frolov, D.H. Bailey, J. Phys. B: At. Mol. Opt. Phys. 36, 1857 (2003)
32. F.E. Harris, Int. J. Quantum Chem. 102, 940 (2005)
33. J.S. Sims, S.A. Hagstrom, J. Phys. B: At. Mol. Opt. Phys. 40, 1575 (2007)
34. A.M. Frolov, J. Phys. B: At. Mol. Opt. Phys. 37, 2103 (2004)
35. J.S. Sims, S.A. Hagstrom, to be submitted
36. R.A. Sack, J. Math. Phys. 5, 245 (1964)
37. P.J. Roberts, J. Chem. Phys. 43, 3547 (1965)
38. J.S. Sims, S.A. Hagstrom, J. Phys. B: At. Mol. Opt. Phys. 37, 1519 (2004)
39. D.M. Fromm, R.N. Hill, Phys. Rev. A 36, 1013 (1987)
40. E. Remiddi, Phys. Rev. A 44, 5492 (1991)
41. F.E. Harris, Phys. Rev. A 55, 1820 (1997)
42. K. Pachucki, M. Puchalski, E. Remiddi, Phys. Rev. A 70, 032502 (2004)
43. J.-L. Calais, P.-O. Löwdin, J. Mol. Spectr. 8, 203 (1962)
44. L. Szász, J. Math. Phys. 3, 1147 (1962)
45. G.W.F. Drake, Phys. Rev. A 18, 820 (1978)
46. Z.-C. Yan, G.W.F. Drake, Chem. Phys. Lett. 259, 96 (1996)
47. J.F. Perkins, J. Chem. Phys. 50, 2819 (1969)
48. M.B. Ruiz, Int. J. Quantum Chem. 101, 246 (2005)
49. MAPLE 9 Release by Waterloo Maple Inc. Copyright 2003
50. E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge,

1967)
51. R. Stevenson, Multiplet Structure of Atoms and Molecules (W. B. Saunders Company, Philadelphia &

London, 1965)

123



64 J Math Chem (2009) 46:24–64

52. O. Rodrigues, Mémoire sur l’attraction des sphéroides, Correspondence sur l’Ecole Royale Polytech-
nique, vol. 3 (1816), pp. 361–385

53. M.B. Ruiz, Int. J. Quantum Chem. 101, 261 (2005)
54. D.J. Jeffrey, in Proceedings of CASC (Technische Universität Munchen, 2002)
55. A.M. Frolov, V.H. Smith, Int. J. Quantum Chem. 63, 269 (1996)
56. W. Kolos, C.C.J. Roothaan, Rev. Mod. Phys. 32, 219 (1960)
57. E.O. Steinborn, K. Ruedenberg, Adv. Quantum Chem. 7, 1 (1973)
58. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World

Scientific, Singapore, 1988)
59. E.J. Weniger, E.O. Steinborn, Comput. Phys. Commun. 25, 149 (1982)
60. J.A. Gaunt, On the Triplets of Helium, Philos. Trans. Roy. Soc. (London) Ser. A 228, 151 (1929)
61. E.P. Wigner, Group Theory (Academic, New York, 1959)
62. O.R. Curzan, Traslational Addition Theorems for Spherical Vecor Wave Functions, Quart. Appl. Math.

20, 33 (1961)
63. R.W. James, P. Appl. Geophys. 68, 83 (1967)
64. E.O. Steinborn, Adv. Quantum Chem. 7, 83 (1973)

123


	Evaluation of Hylleraas-CI atomic integralsby integration over the coordinates of one electron.I. Three-electron integrals
	Abstract
	1 Introduction
	2 Theory
	2.1 Three-electron integrals
	2.2 Two-electron integrals
	2.3 Basic two-electron integrals
	2.4 Auxiliary integrals

	3 Kinetic energy and nuclear attraction three-electron integrals
	4 Conclusions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


